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Abstract

For the delivery of production-quality applications, pure object-oriented languages

such as Smalltalk and Self have some disadvantages compared to conventional lan-

guages. First, an application written in a pure object-oriented language cannot be

delivered as a stand-alone machine-code version of the executable. Second, since

such an application is difficult to interoperate with other programs written in other

languages, it is difficult to construct a sophisticated and practical application that

needs software libraries written in other languages, such as communications, graph-

ics, and database management systems. In a pure object-oriented language, all data

are represented as objects and all computation are performed by sending messages to

objects. All objects are dynamically allocated and then reclaimed by garbage collec-

tion. Furthermore, some pure object-oriented languages have activation records built

into first-class objects. Therefore, it is difficult to directly execute programs writ-

ten in pure object-oriented languages in conventional environments and as a result,

they are usually executed by an interpreter or a virtual machine. Consequently, pure

object-oriented languages are not particularly suited for constructing stand-alone ap-

plications in conventional environments and interoperating with programs written in

conventional languages.

One way to make pure object-oriented languages suitable for delivering applica-

tions is to translate them into an intermediate conventional language that can be

compiled into machine code and can interoperate with programs written in other

languages. By translating them into such an intermediate language, it is possible to

deliver a stand-alone application in conventional environments and to construct an
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application written in multiple languages. However, there are some issues concern-

ing such translation. First, it may impose some restrictions on the functionality of

pure object-oriented languages since a clean translation from a pure object-oriented

language to a conventional language is difficult due to a language gap. Second, for

preserving the functionality of pure object-oriented languages, the generated code

may be so stylized that it is neither portable nor interoperable with code written in

other languages. Third, the two-stage translation into machine code may result in

inefficient code.

To investigate these issues, we have designed, implemented, and evaluated SPiCE

that is a system for translating Smalltalk into C. Smalltalk is a pure object-oriented

language and is not well suited for delivering applications because Smalltalk programs

can neither run in isolation from the Smalltalk environment nor work with programs

written in other languages. On the other hand, C is a portable language that is

compiled into machine code and most other languages can call C procedures and use

its data structures. There are two especially difficult issues that must be accounted

for when translating Smalltalk code into portable, efficient, and interoperable C code

while preserving the functionalities of Smalltalk. First, the execution model of Small-

talk is very different from that of C. Activation records of Smalltalk are created as

first-class objects enabling complex control such as full upward funargs and exception

handling, while those of C are managed as frames on a stack making such complex

control difficult. Second, Smalltalk and C have very different approaches to stor-

age management. Smalltalk has automatic storage management (garbage collection),

while storage management of C is not automatic and C does not offer any support

for garbage collection.

Our approach to the translation is: (1) to create runtime replacement classes im-

plementing the same functionality of Smalltalk classes that are inherently part of the

Smalltalk execution model, and (2) to provide garbage collection that is suitable for

object-oriented applications and combining programs written in multiple languages,

some of which do not offer any support for garbage collection. The creation of runtime
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replacement classes is based on the concept of mapping activation record objects of

Smalltalk onto stack frames, and mapping compiled code of Smalltalk onto machine

code. The key idea of our garbage collection is the use of conservative stack scanning

and indirect referencing together. Our approach fills the gaps of the execution model

and the data model (storage management) in a safe and efficient manner.

Through the evaluation of SPiCE, our approach has proven to be able to generate

portable, efficient, and interoperable C code, and to impose minimal restrictions on

Smalltalk which enables the translation of existing Smalltalk applications as they are.

For example, five large and practical Smalltalk applications, including one commercial

application, have been translated without modifying the application code. Moreover,

by using SPiCE, a practical application written in Smalltalk and a persistent C++

has been developed. The performance of the generated C code is roughly the same

as the fastest Smalltalk implementation.
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Chapter 1

Introduction

1.1 Application Delivery of Object-Oriented Lan-

guages

For the delivery of production-quality applications, pure object-oriented languages

such as Smalltalk [Goldberg and Robson 1983] and Self [Ungar and Smith 1987] have

some disadvantages compared to conventional languages. First, an application written

in a pure object-oriented language cannot be delivered as a stand-alone machine-code

version of the executable. The application can be delivered as source code or as

an interpreted-code version of the executable with an interpreter. Delivering source

code does not allow for confidentiality. Delivering an interpreted-code version of the

executable with an interpreter often requires the user to purchase, in addition to the

application, a license for the interpreter. For these reasons, a stand-alone executable

is the most desirable when delivering an application. Second, a program written in a

pure object-oriented language is difficult to interoperate with other programs written

in other languages. From the viewpoint of the construction of production-quality

applications, the ability of two or more programs written in different programming

languages to work together, or language interoperability, is important. The need for

interoperability arises in many contexts. Generally, the desire to combine programs
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written in different languages springs from the availability of specific capabilities in

some particular language or existing program. If a language lacks interoperability, it

is difficult to develop a sophisticated and practical application that needs software

libraries written in other languages, such as communications, graphics, and database

management systems.

On the other hand, hybrid object-oriented languages such as C++ [Stroustrup

1986] and Objective-C [Cox 1986] are suited for delivering applications. They are

grafted onto some other, usually conventional, languages and they allow program-

mers to intermix a lower level language and remove layers of abstraction. A program

written in a hybrid object-oriented language can be compiled into a stand-alone ex-

ecutable directly or indirectly through a lower level language, and works with other

programs written in a lower level language or other languages through the lower level

language.

However, in a pure object-oriented language, all data, including low-level basic

data such as integers, characters, and arrays, are represented as objects. Furthermore,

all computation, including low-level operations such as variable accessing, arithmetic,

and array indexing, are performed by sending messages to objects. All objects are

dynamically allocated and then reclaimed by garbage collection. Furthermore, some

pure object-oriented languages have activation records built into first-class objects

enabling complex control such as full upward funargs and exception handling. There-

fore, it is difficult to directly execute programs written in pure object-oriented lan-

guages in conventional environments and as a result, they are usually executed by

an interpreter or a virtual machine. Consequently, pure object-oriented languages

are not particularly suited for constructing stand-alone applications in conventional

environments and interoperating with programs written in conventional languages.
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1.2 Translation Approach to Application Delivery

There are two approaches for producing a stand-alone executable for pure object-

oriented languages: compiling the application into machine code directly, or trans-

lating the application into source code for another language and then compiling the

translated code. For language interoperability, the latter approach is preferable.

Most existing approaches for supporting interoperability have been based on the

use of the remote procedure call (RPC) [Birrell and Nelson 1984] for coordinating

the execution of the interoperating programs [Sun 1985; Jones et al. 1985; Bershad

et al. 1987; Gibbons 1987]. The problem of the RPC-based approach is the lack

of “closely coupled” interoperation between programs written in different languages.

Closely coupled means that an application which is as real-time or sophisticated as

a device driver or a database management system might have different parts written

in different languages [Weiser et al. 1989]. The parts could share data structures,

an address space, and threads of control. RPC, even when local but across address

spaces, is usually much more expensive than calls within the same address space.

Another approach for supporting interoperability is the use of a common base

language to which other languages must conform. Languages must be able to inter-

call procedures with the common base language and to mix their data structures

with those of the common base language, or languages must be translated into the

common base language. This approach meets the closely coupled interoperation.

By using an intermediate language as a common base language, translating the

application into source code for such an intermediate language is suitable not only for

the construction of stand-alone executables but for language interoperability. Trans-

lating one language to another is a very old idea. Universal Computer Oriented

Language (UNCOL) [Strong et al. 1958] was first documented in 1958. UNCOL is

an intermediate language for all high-level languages and it is compiled for a specific

architecture. The benefits of UNCOL are: (1) UNCOL provides a common meet-

ing point for all languages and thus enables the combination of programs written in

multiple languages; (2) by emitting UNCOL rather than machine codes, a compiler
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is extremely portable; (3) the UNCOL compiler can simplify the individual language

compilers by providing language-independent optimization.

Today, the C language [Kernighan and Ritchie 1978] could be considered as a

possible UNCOL. Most operating systems have a C compiler and most other languages

can call C procedures and use its data structures. The C compiler provides some level

of machine-specific optimization. Also, many valuable software libraries and systems

written in C are available.

By using a translation approach for pure object-oriented languages, that is, trans-

lating them into an intermediate language like C, it is possible to deliver a stand-alone

application in conventional environments and to construct an application written in

multiple languages. However, there are some issues on such translation:

1. It may impose some restrictions on the functionality of pure object-oriented

languages since a clean translation from a pure object-oriented language to a

conventional language is difficult due to a language gap.

2. For preserving the functionality of pure object-oriented languages, the generated

code may be so stylized that it is neither portable nor interoperable with code

written in other languages.

3. The two-stage translation into machine code may result in inefficient code.

The first two are antagonistic issues against each other, and they become more

problematic when accounting for both of them at the same time.

1.3 Outline of the Thesis

To investigate these issues, we have designed, implemented, and evaluated SPiCE

that is a system for translating Smalltalk into C. Smalltalk is a pure object-oriented

language and is not well suited for delivering applications because Smalltalk pro-

grams can neither run in isolation from the Smalltalk environment nor work with
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other programs written in other languages. On the other hand, C is a portable lan-

guage and can be considered as a possible UNCOL, i.e., the C compiler produces

efficient machine code and most other languages can call C procedures and use its

data structures.

There are two especially difficult issues concerning the translation of Smalltalk

code into portable, efficient, and interoperable C code while preserving the func-

tionalities of Smalltalk. First, the execution model of Smalltalk is very different

from that of C. Activation records of Smalltalk are created as first-class objects en-

abling complex control such as full upward funargs and exception handling, while

those of C are managed as frames on a stack making such complex control dif-

ficult. Second, Smalltalk and C have very different approaches to storage man-

agement. Smalltalk has automatic storage management (garbage collection), while

storage management of C is not automatic and C does not offer any support for

garbage collection. Because of these difficulties, while many work on translating

Smalltalk into an intermediate language has been done [Cox and Schmucker 1987;

Vokach-Brodsky and Wolczko 1990; Nash and Haebich 1991; Moore et al. 1994;

Cla 1994], no one has yet been able to generate portable, efficient, and interoperable

intermediate code while preserving the functionalities of Smalltalk.

First, this thesis proposes the method used in SPiCE for translating Smalltalk into

C. The key feature of the translation is the creation of runtime replacement classes

implementing the same functionality of Smalltalk classes that are inherently part of

the Smalltalk execution model. The creation of runtime replacement classes is based

on the concept of mapping activation record objects of Smalltalk onto stack frames,

and mapping compiled code of Smalltalk onto machine code. The runtime replace-

ment classes encapsulate the differences of the execution model between Smalltalk

and C, and enables the generation of portable, efficient, and interoperable C code

while preserving the functionalities of Smalltalk.

We also propose a new garbage collection technique that is suitable for object-

oriented applications and combining programs written in multiple languages, some of
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which do not offer any support for garbage collection. The key idea of our garbage

collection is the use of conservative stack scanning and indirect referencing together.

This technique fills the gaps of the data model (storage management) between Small-

talk and C, and enables the generated C data structures (Smalltalk objects) to be

mixed with other languages’ data structures.

Then, we show the effectiveness of the translation method and the garbage collec-

tion technique by presenting an evaluation performed with practical applications. We

also show the usefulness of the translation approach to interoperability by presenting

a practical application written in multiple languages.

In Chapter 2, we give some background used through the thesis, and review related

work. Chapter 3 presents the translation method from Smalltalk into C through

the design and implementation of SPiCE. Chapter 4 proposes a garbage collection

technique used in SPiCE. Chapter 5 presents an experience developing a practical

application written in Smalltalk and a persistent C++, and shows the performance

of the generated C code by SPiCE and the garbage collection of SPiCE. Finally,

Chapter 6 summarizes the main results of the thesis and presents some areas for

future research.
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Chapter 2

Background and Related Work

In this chapter, we present background materials. First, Section 2.1 gives a brief

introduction to the Smalltalk language and programming environment. Then, Section

2.2 reviews related work.

2.1 Smalltalk

Smalltalk is more than a language. It is the combination of a language, a set of

reusable objects, a programming environment, and a virtual machine. In the following

two subsections, we review some of the more unique features of the Smalltalk system.

2.1.1 The Smalltalk Language

The Smalltalk language [Goldberg and Robson 1983] is a pure object-oriented lan-

guage. All data are objects, all expressions are message sends, and all computation is

performed by sending messages to objects. Each object is an instance of a class that

is itself an object.

Smalltalk programs contain no static type declarations. Instead, type-correctness

is verified during execution, i.e., Smalltalk is dynamically typed. Dynamic typing

maximizes expressiveness by eliminating the need for more restrictive static type
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checking. It is an important factor in attaining the highest possible degree of polymor-

phism and therefore code reuse. Message sends are always dynamically dispatched:

the method (procedure) invoked depends on the dynamically computed receiver of the

message.

Unlike many earlier Lisps which used dynamically scoped variables, Smalltalk’s

variables are lexically scoped. As a result, the variable bindings in methods can be

determined at compile time.

Smalltalk has only a small set of basic control structures built in: message sends,

blocks (lexical closures), non-local return, and a few more. Other control struc-

tures such as conditional statements and while-loops are constructed out of the basic

ones. For example, in the following statements, a while-loop is constructed by the

whileTrue: message to a block object, and a conditional statement is constructed

by the ifTrue: message to a boolean object:

| string index |

string := ’abcDefg’.

index := 1.

[index <= string size]

whileTrue:

[(string at: index) isUppercase

ifTrue: [^’Has an uppercase character’].

index := index + 1].

^’Not have an uppercase character’.

In the above statements, the Smalltalk compiler can eliminate those message sends

and thus can generate efficient code. However, the Smalltalk compiler cannot optimize

the following statements:
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| string index block1 |

string := ’abcDefg’.

index := 1.

block1 :=

[| block2 |

block2 := [^’Has an uppercase character’].

(string at: index) isUppercase ifTrue: block2.

index := index + 1].

[index <= string size]

whileTrue: block1.

^’Not have an uppercase character’.

In these statements, block1 and block2 are lazy-evaluated and a non-local return

occurs in the evaluation of block2.

As described above, a block is not a syntactic sugar. A block is an object and

it is lazy-evaluated by a value message. A block can refer to values of temporary

variables even after control has returned from the method the block was created in.

This is the so-called upward funarg problem. The method return (ˆ-return) from a

block is a non-local return, and returns to the caller of the method the block was

created in.

Smalltalk has the multiprocessing facility in the form of process and semaphore ob-

jects. A process object represents an independent thread of control and a semaphore

object provides synchronized communication between processes. Smalltalk processes

run in the same address space and can be thought of as lightweight processes (or

threads).

Smalltalk also has the exception handling facility in the form of signal and ex-

ception objects. A normal case and an exceptional case are represented as different

blocks, and they are passed as arguments of a handle:do: message to a signal ob-

ject. When an exception occurs, an exception object is created, and it searches the

prepared block for the exceptional case (or exception block) through the call chain,

and evaluates the exception block with itself as an argument. By sending a message

to the exception object in the exception block, the thread of control is continued,

returned, or restarted. The last two cases cause the call chain to be unwound to the
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handle:do: message invocation.

2.1.2 The Smalltalk System

The Smalltalk system contains a large number of reusable objects. These objects

implement general data structures such as integers, strings, sets, dictionaries, and

points. Other objects implement an interactive programming environment, including

text editors, browsers, and debuggers [Goldberg 1984].

The Smalltalk system is built around the concept of a virtual image. The virtual

image is a dynamic data structure representing all code and data in the Smalltalk

system. Applications are built by incrementally adding, modifying, or reusing such

code and data. As a result, productivity with the Smalltalk environment is much

higher than that with conventional environments. However, applications cannot run

in isolation from the Smalltalk environment because they are part of and dependent

upon the Smalltalk environment.

The lower layer of the virtual image is the virtual machine. The Smalltalk compiler

generates code for the virtual machine, and the virtual machine interprets this code.

Two special features of the virtual machine are the creation of contexts (activation

records) as first-class objects, and automatic storage reclamation (garbage collection).

Contexts are first-class objects that allow reflecting upon the activation records of the

Smalltalk system. For example, the exception handling facility of Smalltalk is written

in Smalltalk itself by an explicit use of contexts. Contexts are inherently part of the

virtual machine’s architecture, or the execution model of Smalltalk. Furthermore,

contexts are reclaimed by garbage collection instead of being managed in an LIFO

stack.

Because of these two features, it is difficult to share threads of control and data

structures with other languages, that is, interoperation with programs written in

other languages is difficult.
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2.2 Related Work

Since Smalltalk is one of the earliest object-oriented languages, many work on trans-

lating Smalltalk into an intermediate language has been done. We now review related

work.

2.2.1 Producer

Producer [Cox and Schmucker 1987] is a tool for translating Smalltalk into Objective-

C, and through the use of the Objective-C compiler, into C. Its purpose is to integrate

the strengths of production programming environments like C/UNIX with rapid pro-

totyping environments like Smalltalk into a comprehensive hybrid environment. The

code generation phase of Producer is divided into two passes. The first pass deter-

mines the types of objects by using typing information, and the second generates

Objective-C code. Typing information is provided in the form of a database of rules.

The programmer is required to supply application-specific rules that provide type

information for the classes that make up the application. Producer does not support

functionalities such as blocks and garbage collection since Objective-C does not have

them. Therefore, it needs help from the programmer for guiding the translation or

modifying programs so that they can be translated. It is not a general translator and

it imposes much restrictions on Smalltalk. Unfortunately, it was unable to measure

the performance of the translated application because a complete set of rules had not

yet been implemented for the translator.

2.2.2 Smalltalk Application Compiler

Smalltalk application compiler [Vokach-Brodsky and Wolczko 1990] is designed to

translate Smalltalk into object-oriented compiler languages such as C++ or Eiffel. Its

purpose is to produce a stand-alone machine-code version of the Smalltalk application.

It proposes a general mapping of the object models between Smalltalk and other

object-oriented compiler languages. The functionalities that are not supported by
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the target language, such as blocks and garbage collection, are written in the target

language or rely on the functionalities of the target language. It was not completely

implemented.

It does not identify nor inference the types of objects, and therefore it translates

the classes describing basic types such as integer or character to the target language.

This approach to types is also adopted by the following three translators.

2.2.3 Orchard

Orchard [Nash and Haebich 1991] is a tool to translate a particular Smalltalk appli-

cation into C. Its purpose is to separate Smalltalk applications from the Smalltalk

environment. A unique feature of it is a creation of standard replacement classes

that implement the functionality of the Smalltalk standard classes such as integers

or characters in a different manner. The application to be translated by Orchard

must use the standard replacement classes instead of the original Smalltalk classes.

It supports garbage collection but does not support blocks. It is not a full translator

and imposes much restrictions on Smalltalk. Applications translated by Orchard run

somewhere between a similar speed to 1/3 the speed of the original Smalltalk.

2.2.4 Babel

Babel [Moore et al. 1994] is a translator from Smalltalk into Common Lisp Ob-

ject System (CLOS) [Bobrow et al. 1988; Keene 1989]. Its purpose is to produce a

stand-alone machine-code version of the Smalltalk application. It imposes minimal

restrictions on Smalltalk since CLOS has rich functionalities such as message sending,

lexical-closures, non-local return, and garbage collection. However, Lisp implemen-

tation is not usually suited for producing a stand-alone machine-code version of the

executable and interoperating with programs written in conventional languages. Ap-

plications translated by Babel are between 4.5 times to 10 times slower than the

original Smalltalk.
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2.2.5 Smalltalk/X

Smalltalk/X [Cla 1994] is the combination of a Smalltalk to C compiler and a runtime

system. An application of Smalltalk/X is compiled into a stand-alone executable.

Smalltalk/X supports almost all functionalities of Smalltalk such as blocks, processes,

exception handling, and garbage collection, and thus it imposes minimal restrictions

on Smalltalk. However, its compiler generates neither portable nor interoperable

C code. The runtime system creates contexts as in the Smalltalk virtual machine

and the generated C code is assumed to be executed by using the contexts. As a

result, the generated C code does not follow the C procedure call/return mechanism

and therefore inter-calling procedures with other C programs is not straightforward.

Furthermore, programmers must be careful of mixing data structures. A Smalltalk/X

object must be referred to from the contexts so as not to be reclaimed by garbage

collection. If an object is referred to only from a native C stack, i.e., local C variables,

it is reclaimed by garbage collection and this results in a dangling pointer.

2.2.6 Summary of Related Work

We characterize the related work with respect to three issues on the translation de-

scribed in Section 1.2: restrictions on Smalltalk; the generation of interoperable code;

and the generation of efficient code. Table 2.1 gives a summary of the related work.

No one has yet been able to generate interoperable and efficient intermediate code

while preserving the functionalities of Smalltalk.

Table 2.1: Summary of related work

Restrictions Interoperability Efficiency
Producer Much Good No data
Application Compiler Much Good No data
Orchard Much Good 1 time to 3 times slower
Babel Minimal Not Good 4.5 times to 10 times slower
Smalltalk/X Minimal Not Good No data
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Chapter 3

SPiCE: A System for Translating

Smalltalk Programs into a C

Environment

We present SPiCE that is a system for translating Smalltalk programs into a C

environment. In this chapter, it is assumed that the reader has some familiarity with

C. First, Section 3.1 gives a background of SPiCE, and Section 3.2 describes difficulties

of the translation. Then, Section 3.3 presents the key concept of the translation, and

Section 3.4 gives an overview of the translation. Following this, Section 3.5 describes

how Smalltalk can be translated into C, and Section 3.6 describes runtime replacement

classes. Section 3.7 gives an overview of the garbage collection of SPiCE. Section 3.8

discusses how to boot the translated applications. Finally, Section 3.9 summarizes

SPiCE.

3.1 Background

Smalltalk is very well suited for prototyping of applications but it is less well suited for

delivering applications because Smalltalk programs can neither run in isolation from

the Smalltalk environment nor work with other programs written in other languages.
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One way to make Smalltalk suitable for delivering applications is to translate Small-

talk into a conventional language such as C. C is a portable language that is compiled

into machine code and most other languages can call C procedures and use its data

structures. By translating Smalltalk code into portable and interoperable C code, it

is possible to deliver a stand-alone machine-code version of the Smalltalk application,

and to construct an application written in Smalltalk, C, and other languages through

C.

We have designed and implemented SPiCE that is a system for translating Small-

talk into C. The goals of the SPiCE project are:

1. To make possible the delivery of a stand-alone machine-code version of the

Smalltalk application.

2. To translate existing practical Smalltalk applications as they are. This means

that Smalltalk functionalities used by such applications, such as processes,

blocks, exception handling, and garbage collection, must be preserved.

3. To improve C interoperability of Smalltalk by generating interoperable C code.

This enables the construction of an application written in Smalltalk, C, and

other languages through C.

4. To execute the translated application faster than the original Smalltalk.

Last three goals are linked to three issues on the translation described in Section

1.2.

3.2 Difficulties of the Translation

There are two especially difficult issues concerning the translation of Smalltalk code

into portable, efficient, and interoperable C code while preserving the functionalities

of Smalltalk. First, the execution model of Smalltalk is very different from that of
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C. Activation records of Smalltalk are created as first-class objects enabling com-

plex control such as full upward funargs and exception handling, while those of C

are managed as frames on a stack making such complex control difficult. Second,

Smalltalk and C have very different approaches to storage management. Smalltalk

has automatic storage management (garbage collection), while storage management

of C is not automatic and C does not offer any support for garbage collection.

One approach for preserving the functionalities of Smalltalk is to provide a runtime

system that supports the facilities of the virtual machine such as contexts, and to

generate C code that is executed by using the facilities provided by the runtime

system. This approach is used in Smalltalk/X [Cla 1994]. A similar approach is

used in Kyoto Common Lisp (KCL) [Yuasa and Hagiya 1985]. KCL is a Common

Lisp system, and its Lisp compiler generates C code instead of generating machine

code directly. The generated C code is assumed to be executed by using the KCL

interpreter stacks that enable special control and garbage collection. However, this

approach fails to generate interoperable C code. The generated C code does not follow

the C procedure call/return mechanism and therefore inter-calling procedures with

other C programs is not straightforward. Furthermore, programmers must be careful

of mixing data structures. The generated C data structure (or an object) must be

referred to from a context or a special stack so as not to be reclaimed by garbage

collection. If an object is referred to only from a native C stack, i.e., local C variables,

it is reclaimed by garbage collection and this results in a dangling pointer.

By interoperable C code, we mean that the generated C code must be easily and

efficiently combined with other C programs or code written in other languages, and

the generated C data structures must be safely mixed with other languages’ data

structures. The generated C code should use as much of C facilities as possible:

the generated C code should follow the C procedure call/return mechanism, and the

generated C data structures should be safely referred to from C variables. We do not

want a context or a special stack to enable complex control, or a tagged pointer to

enable garbage collection, as this is inefficient and undesirable for interoperability.
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3.3 Key Concept of the Translation

As described in Section 2.1.2, the virtual image includes all code and data in the

Smalltalk system. All code and data are represented as objects, and each object is

an instance of a class that is itself an object. Translating Smalltalk into C means

representing the code and data of Smalltalk in C.

However, there are some classes that are inherently part of the virtual machine’s

architecture. Their functionality, which includes processes, exception handling, and

blocks (lexical closures), is used at the application level. These classes cannot be

represented in C on the micro processor’s architecture, because the virtual machine

creates contexts as first-class objects and instances of these classes refer to contexts.

While activation records of C are managed as frames on an LIFO stack, contexts are

created as objects and some situations produce non-LIFO control.

To solve this problem, we created runtime replacement classes that implement

the same functionality of such classes on the micro processor’s architecture. The im-

plementation of the runtime replacement classes is based on the concept of mapping

contexts onto stack frames, and mapping compiled code (compiled methods) onto ma-

chine code. The lower layer of the runtime replacement classes is a runtime system

that supports their functionalities. The runtime system also supports method lookup,

primitive operations, and garbage collection. An instance of the runtime replacement

classes can be used the same as in the Smalltalk system but it includes pointers to

stack frames or machine code that are interpreted and managed only by the runtime

system. The runtime replacement classes encapsulate the differences of the execution

model between Smalltalk and C, without referring to implementation details by pre-

venting an object from being manipulated except via its defined external operations.

Fig. 3.1 shows a mapping of the execution models between Smalltalk and SPiCE.

Another problem is that objects created by the generated C code by SPiCE must

be reclaimed when they are no longer referred to. To solve this problem, we have

designed a garbage collection technique, called generation scavenging with ambigu-

ous roots, that is suitable for object-oriented applications and combining programs
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Figure 3.1: Mapping of execution models between Smalltalk and SPiCE

written in multiple languages, some of which do not offer any support for garbage

collection. The key idea of our garbage collection is the use of conservative stack

scanning and indirect referencing together. Conservative stack scanning enables the

generated C data structures (Smalltalk objects) to be mixed with other languages’

data structures. Indirect referencing enables the use of generational copying garbage

collection algorithm in a conservative manner. An overview of our garbage collection

technique is described in Section 3.7.

3.4 Overview of the Translation

The translator of SPiCE is written in Smalltalk, which provides the following ad-

vantages. First, an existing Smalltalk compiler can be utilized, and second, static

analysis of the Smalltalk text, such as type inferencing, becomes easier due to the

information from the Smalltalk environment. Its runtime replacement classes and

runtime system is written in C. The runtime replacement classes were first translated
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into from the original classes by the translator, then were modified by hand.

A method (procedure) is realized as a C function, a class definition as a definition

of the structure of its instance, and an object as data of the type given by its class. A

class object is also realized as data of the type given by its class (metaclass). When

the translator is invoked to translate a class, it generates C functions corresponding to

instance methods and class methods of the class, and C data corresponding to a class

object, a metaclass object, class variable objects, and literal objects. To translate

objects shared with several classes such as shared variable objects, the translator can

translate a specified object into C data. Fig. 3.2 shows an overview of the translation

process in SPiCE. Classes and shared objects required by an application are translated

by the translator and the generated C code becomes executable when linked with the

runtime replacement classes and the runtime system. Other code originally written

in C also can be linked.

runtime system

other C code

classes and shared

objects required

by an application
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replacement

classes

generated C code

.c
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Figure 3.2: Overview of the translation process
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3.5 Translating Smalltalk into C

3.5.1 Primitive Builtin Types

The C language defines the basic data types, such as int1, float, and char and

the basic operations for these data types. In Smalltalk, corresponding data types

are defined as classes, such as SmallInteger2, Float, and Character. Instances of these

classes can respond to messages and a programmer can modify their operations.

Mapping these classes to the basic types of C improves the efficiency of the generated

code. However, we define these classes as normal classes to preserve the semantics of

Smalltalk. Another reason for not mapping them is that type inferencing of Smalltalk

is very difficult because Smalltalk has no type (or it is a dynamically-typed language).

3.5.2 Literals

Smalltalk has six types of literals that refer to constant objects. The six types are:

numbers, characters, strings, byte arrays, symbols, and arrays of other literals. Liter-

als for SmallInteger and Character, which are immediate objects3, are translated into

bit operations that convert integers or characters of C to tagged representations4 of

SmallInteger or Character. The other literals are translated into pointers to static

data in the functions corresponding to the methods. However, literals for symbols

are translated into pointers to global data so that they are unique in the translated

application program.

Fig. 3.3 shows an example of the translation of literals. The prefix ‘sp ’ is used

for names, so that similar names do not interfere with other C programs. The type

sp otEntry represents an object table entry. We will describe the object table in

more details in section 3.7.

1Note that a typewriter font is used for C code fragments.
2Note that a sans serif font is used for Smalltalk code fragments.
3Immediate objects are stored within a machine word as tagged immediate values.
4These tagged representations are used to identify a class of an immediate object, not to realize

garbage collection.
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/*

The original Smalltalk code is:

’a string’. 10. #symbol.

*/

#define sp_asSmallInt(n) ((n)<<shiftX | tagX)

typedef struct { word_t *dataPtr; ... } sp_otEntry, *sp_oop;

static char sp_literal1_data[] = "a string";

static sp_otEntry sp_literal1 = { (word_t*)sp_literal1_data, ... };

extern sp_otEntry s_symbol;

&sp_literal1; sp_asSmallInt(10); &s_symbol;

Figure 3.3: Example of the translation of literals

A block is also thought to be a literal. The translation of blocks is not straight-

forward. A block literal refers to an instance of BlockClosure and this instance is

lazy-evaluated by a value message. Since an instance of BlockClosure refers to a com-

piled method and a context, BlockClosure is a runtime replacement class. Blocks are

described in Section 3.6.3.

3.5.3 Variables

Smalltalk has the following four types of variables: temporary variables, instance

variables, shared variables, and pseudo variables. Temporary variables are private

within a method and are translated into temporary variables in the C function. The

receiver and arguments of a method are passed as arguments of the C function.

The instance variables of a receiver object are translated into member access to the

corresponding C structure. In Smalltalk, shared variables, such as global variables,

pool variables, and class variables, are Association objects in Dictionary objects that

represents name scopes and this structure is visible to the programmer. For example,

an expression ‘Smalltalk includesKey: #Association’ is used to test if a class named

Association exists in the system. To preserve this semantics, shared variables and the
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name scope dictionaries are translated into global data. Pseudo variables such as true,

false and nil are translated into pointers to the corresponding global data. Pseudo

variable thisContext, which refers to an active context, is not supported. This pseudo

variable is only used in classes that are inherently part of the Smalltalk execution

model and these classes are supported as the runtime replacement classes.

Fig. 3.4 shows an example of the translation of variables. Macro ‘P2’ is used for

arranging the order of the arguments and this is described in the next section.

/*

The original Smalltalk code is:

(Association)example: arg

| tmp |

tmp := arg.

tmp := key. "instance variable"

tmp := Association. "global variable"

tmp := nil.

*/

typedef struct { sp_oop key, value; } sp_Association;

extern sp_otEntry sp_g_Association, sp_nil;

#define sp_sval(anAsc) ((sp_Association*)(anAsc).dataPtr)->value

#define nil (&sp_nil)

sp_oop sp_m_Association_example_(P2(self, arg))

sp_oop self, arg;

{

sp_oop tmp;

tmp = arg;

tmp = ((sp_Association*)self->dataPtr)->key;

tmp = sp_sval(sp_g_Association);

tmp = nil;

return self;

}

Figure 3.4: Example of the translation of variables
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3.5.4 Messages

A message expression is translated into a runtime routine call that looks up and calls

the function corresponding to the method that will be invoked by the message. The

key of a method lookup is a symbol object that is a literal. One implementation

problem is that, in Smalltalk, the receiver is evaluated first, and the arguments are

evaluated in the order from left to right, but the order of evaluation of arguments

in C depends on the platform (e.g. the C compiler). To solve this problem, macros

with arguments are used at the runtime lookup routine call for arranging the order

of arguments according to the platform.

The following four types of message expressions are translated specially:

1. A message that represents a control structure such as ifTrue:ifFalse: or whileTrue:

is translated into the control structure of C such as if or while statements, if

possible.

2. An arithmetic message such as +, −, ∗, or / is translated into a runtime routine

call that executes an arithmetic primitive when the receiver is SmallInteger or

Float. If the receiver is neither SmallInteger nor Float, or if the arithmetic

primitive fails, normal method lookup is performed.

3. If the class of a message receiver can be identified at translation time, a function

corresponding to the method invoked by the message is looked up and this

message is translated into a call to the function. The class of a receiver can be

identified from Smalltalk text only if the receiver is a literal, a block (literal), or

a class name. If the receiver is the pseudo-variable super, the function invoked

by the message can be statically looked up. If the receiver is the pseudo-variable

self and the class in which the method is declared has no sub-classes, the function

invoked by the message can also be statically looked up. We do not perform

any other kind of type inferencing.

4. We selected frequently used messages, such as at:, at:put:, and size, from the

Smalltalk environment. For each class, functions corresponding to the methods
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invoked by these frequently used messages are looked up at translation time

and these functions are registered in a table prepared in a class data structure.

A frequently used message is translated into a runtime routine call that selects

a function from the table in the class of the receiver and calls it.

3.6 Runtime Replacement Classes

The generated C code becomes executable when linked with the runtime replacement

classes and the runtime system. The following eight classes are runtime replacement

classes: Behavior, Class, Metaclass, Process, Semaphore, BlockClosure, Exception, and

Signal. Smalltalk classes that support programming, such as Compiler and Debugger,

are not the target of the translation. All other classes, except for CompiledMethod

and Context, can be translated as they are. The runtime system manages the runtime

replacement classes and supports method lookup, primitive operations, and garbage

collection. In this section, we describe the runtime replacement classes. We do not

describe the runtime system in detail except for garbage collection. An overview of

the garbage collection of SPiCE is described in Section 3.7.

3.6.1 Classes

Behavior, Class, and Metaclass provide the Smalltalk class mechanism. They are real-

ized as they are, except for a reference to a method dictionary. The method dictionary

is realized as a table that is composed of pairs of message selectors, i.e., symbol objects

and C functions. This table is used for the method lookup by the runtime system.

Instances of these classes also have a table for frequently used messages as described

in Section 3.5.4.

3.6.2 Processes

Process represents an independent thread of control and Semaphore provides synchro-

nized communication between processes. Smalltalk processes run in the same address
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space and each process has a chain of contexts that represents a thread of control. A

Smalltalk process is thought to be lightweight processes (or threads), and a context

chain can be mapped onto a C language execution stack (or C-stack). The runtime

system supports lightweight processes and allocates C-stacks for each process object.

We call these C-stacks user stacks. On the other hand, we call a single C-stack that

is allocated by the operating system the kernel stack. The kernel stack is used only at

the time of system initialization, system finalization, and garbage collection. During

process switching, registers are saved on a user stack, its stack pointer is saved in

a process object, then the user stack is switched. Fig. 3.5 shows a comparison of

processes in Smalltalk and SPiCE.
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Figure 3.5: Comparison of processes in Smalltalk and SPiCE

3.6.3 Blocks

An instance of BlockClosure (a block) is created by a block literal and it is lazy-

evaluated by a value message. A block can refer to values of temporary variables
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even after control has returned from the method the block was created in. This is

the so-called upward funarg problem. The method return (ˆ-return) from a block is a

non-local return, and returns to the caller of the method the block was created in.

A block literal is translated into a function (called a block function) corresponding

to the text in the block and a runtime routine call that creates a block. The realized

block has three instance variables. The first instance variable is used to refer to the

block function. When the block is lazy-evaluated, its block function is called with the

arguments: the evaluated block itself and the block arguments. The second instance

variable is used to refer to an array object that is a space for values of the variables

out of the block’s scope. Such variables are translated so that their corresponding

C code refers to the contents of the array object. This array object exists without

being reclaimed by garbage collection even after control has returned from the method

because it is referred to from the block. This is a simple solution to the upward funarg

problem. The third instance variable is used to refer to the block that represents the

outer scope and is used to chain the nested blocks.

The method return is implemented using the C library functions for non-local

return (setjmp and longjmp). When a method being translated includes a method

return from a block, the translator generates the setjmp call to save the runtime state

(i.e., registers). The runtime state is saved on the user stack and is referred to from

the block using the third instance variable. When a method return from the block

is executed, the runtime state is searched for through the third instance variable of

the blocks and longjmp is called with the runtime state as an argument to continue

execution from the corresponding setjmp call. Fig. 3.6 shows snapshots of a block

evaluation in Smalltalk and SPiCE, and Fig. 3.7 shows an example of the translation

of blocks.

3.6.4 Exception Handling

Exception and Signal provide the exception handling facility. A normal case and an

exceptional case are represented as different block objects, and they are passed as
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/*
The original Smalltalk code is:
(Collection)select: aBlock ifError: errorBlock

| newCollection |
newCollection := self species new.
self do: [:each | | result |

result := aBlock value: each.
(result isKindOf: Boolean) ifFalse: [^errorBlock value].
result ifTrue: [newCollection add: each]].

^newCollection
*/
#define ms_0(self, selector) sp_lookup0(selector, P1(self))
#define ms_1(self, selector, a1) sp_lookup1(selector, P2(self, a1))
#define sp_setContext(c_env) \

sp_oop _resultOop; jmp_buf c_env; \
if ((_resultOop = (sp_oop)_setjmp(c_env)) != 0) return _resultOop;

typedef struct { sp_oop blockFunction, contextArray, outerScope; } sp_BlockClosure;

sp_oop sp_m_Collection_select_ifError_(P3(self, aBlock, errorBlock))
sp_oop self, aBlock, errorBlock;
{

/* The variable ’newCollection’ can be allocated in the stack frame, because at
* translation time the variable ’newCollection’ is never assigned after a block
* is created.
*/

sp_oop newCollection = nil;
sp_setContext(c_env);

newCollection = ms_0(ms_0(self, &s_species), &s_new);
ms_1(self, &s_do_, sp_mkBlock(

sp_m_b1_Collection_select_ifError_, /* blockFunction */
sp_mkCtxAry(3, aBlock, errorBlock, newCollection), /* contextArray */
c_env)); /* outerScope */

return newCollection;
}

sp_oop sp_m_b1_Collection_select_ifError_(P2(_block, each))
sp_oop _block, each;
{

/* The variables ’aBlock’, ’errorBlock’ and ’newCollection’ can be copied into
* the stack frame, because at translation time the variables ’aBlock’,
* ’errorBlock’ and ’newCollection’ are never assigned after a block is created.
*/

sp_oop result = nil;
sp_oop contextArray = ((sp_BlockClosure*)_block->bodyPtr)->contextArray;
sp_oop aBlock = contextArray->bodyPtr[0];
sp_oop errorBlock = contextArray->bodyPtr[1];
sp_oop newCollection = contextArray->bodyPtr[2];

result = ms_1(aBlock, &s_value_, each);
if (ms_1(result, &sp_isKindOf_, sp_sval(sp_g_Boolean)) == true)

;
else

sp_methodReturn(_block, ms_0(errorBlock, &s_value));
/* look up c_env from _block and call longjmp() */

if (result == true)
return ms_1(newCollection, &s_add_, each);

else
return nil;

}

Figure 3.7: Example of the translation of blocks
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arguments of a handle:do: message to an instance of Signal. When an exception

occurs, an instance of Exception is created, and it searches the prepared block for

the exceptional case (or exception block) through the call chain, and evaluates the

exception block with itself as an argument. By sending a message to the instance

of Exception in the exception block, the thread of control is continued, returned, or

restarted. The last two cases cause the call chain to be unwound to the handle:do:

message invocation.

Our implementation of exception handling employs the user stack as an exception

handling stack and the C library functions for non-local return (setjmp and longjmp)

to unwind the user stack. At the invocation of the handle:do: message, a pointer to

the exception block and the runtime state are saved on the user stack. The pair

are chained at every invocation of the handle:do: message and the chain is kept in

a process object. When an exception occurs, the exception block and the runtime

state are searched through this chain, the exception block is evaluated, and if needed,

longjmp is called with the runtime state as an argument to continue execution from

the corresponding setjmp call.

3.7 Garbage Collection

We need a garbage collection that works without language support for garbage col-

lection, or is suited for combining programs written in multiple languages, some of

which do not offer any support for garbage collection. There is, however, conserva-

tive garbage collection [Boehm and Weiser 1988] that works without language support.

This technique treats any data accessible to the object in the stack, registers, and

the data area as potential pointers. If the data value points to a valid object, the

object is assumed to be accessible. Unfortunately, this technique is not suited for

pure object-oriented languages. It identifies a superset of the true pointers, so it

cannot relocate an object because an integer value may happen to correspond to the
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address of a valid object. Therefore, it relies on the use of a mark-and-sweep algo-

rithm and it cannot compact the heap. In a pure object-oriented language, all data,

including low-level basic data such as integers, strings, and arrays, are represented as

objects, and they are dynamically allocated in the heap. Therefore, many short-lived

objects are created. For example, the storage allocation rate of Smalltalk exceeds 100

Kbytes/sec, and most allocated objects will die soon. In such a situation, the mark-

and-sweep algorithm causes unacceptable pauses and the non-compacting algorithm

causes unacceptable fragmentation of the heap.

Generation scavenging [Ungar 1984] is generational copying garbage collection

and is used in the implementation of object-oriented languages such as Smalltalk and

Self. It is very well suited for object-oriented applications because its has the following

advantages: high performance, non-disruptive pauses, and compaction of the heap.

We try to use generation scavenging without language support. Our approach uses an

object table (OT) through which all objects are referred to by object-oriented pointers

(OOPs). If the data value points to a valid OT entry, the object the OT entry points

to is assumed to be accessible. Even if an integer value happens to correspond to the

address of a valid OT entry, an object can be relocated safely by changing only the

content of the OT entry.

Since the OT can be used and OT entries cannot be moved, our approach has

the disadvantage compared to generation scavenging: all OT entries must be scanned

to recycle dead entries. To reduce the number of scans of OT entries, we divide the

OT into two parts, the new OT and the old OT, and we scan only the new OT at

scavenging.

Our approach is not fully conservative. Objects must be referred to through the

OT. A direct pointer or an internal pointer to an object is not allowed. However, as

far as using OOPs, our approach is safe.

We call our garbage collection technique generation scavenging with ambiguous

roots. Because of its unique features, our garbage collection technique is described in

more details in Chapter 4.
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3.8 Application Booting

Smalltalk has no concept of system booting. The running Smalltalk system is saved

as a virtual image. In SPiCE, the translated application must be booted from the

generated and compiled C code. To boot the application, objects that are never

created from Smalltalk code such as process queues, symbols, and a system dictionary

must be created first. Such objects are either translated by the translator5, prepared

in the runtime system, or created at the time of system initialization. At the time of

system initialization, all translated global variables are added into a system dictionary

object and initialize messages are sent to all class objects that are able to respond to

the initialize message. Fortunately, most initialize methods for classes could be used

for booting, and only a few initialize methods had to be modified. Global variables,

pool variables, and class variables were initialized in initialize methods.

3.9 Summary

Our approach to the translation is, first, to create runtime replacement classes im-

plementing the same functionality of Smalltalk classes that are inherently part of

the Smalltalk execution model, and second, to provide a garbage collection that is

suitable for object-oriented applications and combining programs written in multi-

ple languages, some of which do not offer any support for garbage collection. The

creation of runtime replacement classes is based on the concept of mapping contexts

onto stack frames, and mapping compiled methods onto machine code. The runtime

replacement classes encapsulate the differences of the execution model between Small-

talk and C, and enables the generation of portable, efficient, and interoperable C code

while preserving the functionalities of Smalltalk. Our garbage collection technique

fills the gaps of the data model (storage management) between Smalltalk and C, and

enables the generated C data structures (Smalltalk objects) to be mixed with other

languages’ data structures.

5The translator can translate a specified object into C data as described in Section 3.4.
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We describes our garbage collection technique, called generation scavenging with

ambiguous roots, in more details in Chapter 4, and we evaluate SPiCE in Chapter 5.
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Chapter 4

Generation Scavenging with

Ambiguous Roots

Considering the advantages of object-oriented programming such as modular design

and software reuse, garbage collection is necessary to avoid introducing unnecessary

inter-module dependencies. A method operating on an object should not have to

depend what other methods may be operating on the same object, unless there is some

good reason to coordinate their activities. If objects must be deallocated explicitly,

some module must be responsible for knowing when other modules are not interested

in a particular object. Also, garbage collection is necessary to avoid many bugs and

remove a lot of clutter from code.

In this chapter, we present a garbage collection technique that is suitable for

object-oriented applications and combining programs written in multiple languages,

some of which do not offer any support for garbage collection. First, Section 4.1 shows

the requirements for garbage collection. Then, Section 4.2 reviews conservatism in

garbage collection. In the following four sections, we present two versions of our

garbage collection technique called generation scavenging with ambiguous roots. Sec-

tion 4.7 describes implementation details of the garbage collector of SPiCE that is

a practical implementation of generation scavenging with ambiguous roots. Finally,

Section 4.8 summarizes our garbage collection technique.
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4.1 Requirements for Garbage Collection

Recall that the goal of this work is to translate Smalltalk code into portable, efficient,

and interoperable C code while preserving the functionalities of Smalltalk. Thus, our

requirements for garbage collection are as follows:

1. It should work without language support for garbage collection.

For interoperability, the generated C data structures (Smalltalk objects) must

be safely mixed with other languages’ data structures. Therefore, the garbage

collection should work without language support, or should be suited for com-

bining programs written in multiple languages, some of which do not offer any

support for garbage collection.

2. It should compact the heap.

3. It should have a short pause time.

In a pure object-oriented language, all data, including low-level basic data such

as integers, strings, and arrays, are represented as objects, and they are dynam-

ically allocated in the heap. Therefore, many short-lived objects are created.

For example, the storage allocation rate of Smalltalk exceeds 100 Kbytes/sec,

and most allocated objects will die soon. In such a situation, a non-compacting

garbage collection algorithm causes unacceptable fragmentation of the heap.

Also, a mark-and-sweep or stop-and-copy garbage collection algorithm causes

disruptive pauses for near real-time or interactive applications.

4.2 Conservatism in Garbage Collection

4.2.1 Conservative Collector

Abstractly speaking, the basic functioning of a garbage collector consists of two part:
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1. Distinguishing the live objects from the garbage in some way (garbage detection),

and

2. Reclaiming the garbage objects’ storage, so that the running program can use

it (garbage reclamation).

In practice, these two phases may be functionally or temporally interleaved, and

the reclamation technique is strongly dependent on the garbage detection technique.

Most garbage collectors use a “liveness” criterion defined in terms of a root set and

reachability from these roots, and they require some cooperation from the language

(compiler or interpreter) for garbage detection. The garbage collector must identify

pointers in roots, such as the stack and registers, or in objects.

There is, however, a technique called conservative pointer-finding [Boehm and

Weiser 1988] that does not require any cooperation from the language. This technique

treats any data accessible to the object in the stack, registers, and the data area as a

potential pointer. If the data value points to a valid object, the object it points to is

assumed to be accessible. This simplifies the garbage collection of programs written

without garbage collection in mind, and programs written in multiple languages,

some of which are uncooperative. However, this technique imposes an additional

constraint on the garbage collector. It identifies a superset of the true root set, i.e.,

ambiguous roots, so it cannot relocate an object because an integer value may happen

to correspond to the address of a valid object. Conservative pointer-finding is used

in many conservative collectors with various garbage reclamation algorithms [Boehm

and Weiser 1988; Demers et al. 1990; Boehm et al. 1991]. However, these collectors

do not satisfy our requirements because they cannot compact the heap because of the

constraint of conservative pointer-finding.

4.2.2 Partially Conservative Collector

Mostly-copying collector [Bartlett 1988] is a compacting “partially conservative” col-

lector. Partially conservative means that the collector scans the stack and registers
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conservatively by using conservative pointer-finding but the heap precisely, so object

formats in the heap must be recognizable by the collector.

In this technique, the heap is divided into a number of equal-size pages and an

object is allocated into the page. The heap is conceptually divided into two equal

space: current-space and next-space, and each page has a space identifier that identifies

the space that objects on the page belong to. Mostly-copying collection proceeds as

follows. First, the collector scans the stack and registers conservatively by using

conservative pointer-finding, that is, it guesses which pages contain objects that may

be referred to from pointers in the stack and registers. These pages are promoted

to the next-space. Promoting a page means that the space identifier of the page is

flagged such that the page will be retained when the collector is over. The pointers

in the stack and registers refers to such pages are ambiguous roots. It is important

that the pages referred to from these ambiguous roots be locked, so the objects on

these pages can be retained. Once the initial promoted objects have been identified,

the collector scans the promoted objects and forwards (copies) all objects referred to

from these objects into a more compact area in next-space. The forwarded pointers

of the copied objects are updated in the object being scanned. Scanning continues

until all promoted and forwarded objects have been scanned.

Mostly-copying collector is used in the implementation of Modula-3 [Cardelli et al.

1989] and SCHEME->C [Bartlett 1989]. However, it does not satisfy our requirements

because it relies on the use of stop-and-copy algorithm that may cause long pauses

and its compaction of the heap is marginal.

4.2.3 Reference Counting Collector

Reference counting [Collins 1960] is a garbage collection technique that uses another

liveness criterion. In this technique, each object has an associated count of the ref-

erences (pointers) to it. Each time a reference to the object is created, e.g., when

a pointer is copied from one place to another by an assignment, the object’s count

is incremented. When an existing reference to an object is eliminated, the count is
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decremented. The memory occupied by an object may be reclaimed when the object’s

count equals zero, since this indicated that no pointers to the object exist and the

running program could not reach it. The problems of this technique are: (1) it has a

great deal of overhead in an adjusting reference counts done by the running program;

(2) it fails to reclaim circular structures; and (3) it does not compact the heap.

Deferred reference counting [Deutsch and Bobrow 1976] avoids adjusting reference

counts for most short-lived pointers from the stack, and greatly reduces the overhead

of reference counting. But this technique does not solve the rest of the problems.

Reference counting and deferred reference counting do not satisfy our requirements

because they do not compact the heap.

4.3 Outline of Generation Scavenging with Am-

biguous Roots

4.3.1 Generation Scavenging

Before describing our technique, we explains Ungar’s generation scavenging [Ungar

1984]. Ungar’s generation scavenging is generational copying garbage collection which

satisfies our second and third requirement. This technique is very suited for pure

object-oriented languages and used in the implementation of them, such as Small-

talk and Self. Fig. 4.1 shows the heap structure and a sample object structure of

generation scavenging.

In generation scavenging, each object is classified as either new or old by genera-

tion. Old objects reside in a region of memory called old space. New objects similarly

reside in new space. All old objects that refer new objects are registered in a table

called the remembered set. New space is divided into three spaces: creation space,

past survivor space, and future survivor space. All objects are created in creation

space. All scavenged (copy collected) objects reside in past survivor space. No object

resides in future survivor space at the running program.
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Generation scavenging proceeds as follows. First, all new objects that are reach-

able from the old objects in the remembered set and the roots of the system, such as

the stack and registers, are scavenged, i.e., all new live object are copied from creation

space or past survivor space into future survivor space. If a new object becomes old

enough, that is, it survives enough scavenges, it becomes an old object and it is pro-

moted into old space. This promotion is called tenuring. At the end of scavenging,

past survivor space is exchanged with future survivor space.

This technique has following advantages: (1) scavenging just the youngest gener-

ation is much faster than a full garbage collection; and (2) it can compact the heap

at scavenging. However, it cannot be used with conservative pointer-finding because

it is a copying collector that must know whether a value is a pointer to an object or

not for moving the object and updating the pointer.

4.3.2 Conservative OOP-Finding

We try to use generation scavenging in a conservative manner, that is, the collector

assumes that any value on the stack, registers, and the data area could be a potential

pointer. Our approach uses an object table (OT) through which all objects are referred

to by object-oriented pointers (OOPs). If the data value points to a valid OT entry,

the object the OT entry points to is assumed to be accessible. Even if an integer

value happens to correspond to the address of a valid OT entry, an object can be

relocated safely by changing only the content of the OT entry. The basic method for

checking this validity, called conservative OOP-finding, is as follows (see Fig. 4.2):

1. If the data value is below the lowest OT address or above the highest OT

address, it is not an OOP.

2. If the offset of the data value from the lowest OT address is not a multiple of

the OT entry size, it is not an OOP.

3. If the OT entry the data value points to does not refer to an object, it is not

an OOP.
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Our approach is not fully conservative because objects must be referred to through

the OT and a direct pointer or an internal pointer to an object is not allowed. How-

ever, as far as using OOPs, our approach does not require any cooperation from the

language because the stack and registers are scanned conservatively by using conser-

vative OOP-finding.

4.4 Collector I

We describe the collector I that is an initial version of generation scavenging with

ambiguous roots. It scans not only the stack and registers but also the heap conser-

vatively by using conservative OOP-finding, so object formats in the heap need not

to be recognizable by the collector I.

Each OT entry consists of a pointer to the object’s body (contents), the size of

the object (size), the age of the object (age), the flag indicating that the object is

new one (isNew), the flag indicating that the object is forwarded (isForwarded), and

the flag indicating that the object is in the remembered set (isRemembered). The C

language declaration for the OT entry is as follows:

typedef struct otEntry {

word_t *contents;

struct {

unsigned isNew :1;

unsigned isForwarded :1;

unsigned isRemembered:1;

unsigned :5;

unsigned age :8;

unsigned size :16;

} gcInfo;

} *oop;

Fig. 4.3 shows the heap structure and a sample object structure of the collector

I. The heap is divided into CreationSpace, PastSurvivorSpace, FutureSurvivorSpace,

OT, and OldSpace. OT bottom and OT top show the lowest and the highest address
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of the OT. All free OT entries are managed as a linked list by using the contents field

of the OT entry.

In the collector I, only new objects are scavenged, so the C language implementa-

tion of conservative OOP-finding is as follows (In this implementation, the collector

I assumes that the size of the OT entry is eight bytes):

if ((OT_bottom <= value && value < OT_top) &&

(value & 7) == 0 &&

((oop)value)->gcInfo.isNew)

{

/* copy and forward */

}

Roughly speaking, the collector I reclaims objects by using Ungar’s generation

scavenging and reclaims OT entries by using conservative mark-and-sweep algorithm.

The main differences of the collector I from Ungar’s generation scavenging are to

scan roots of the system by using conservative OOP-finding (ambiguous roots), to

scan objects in the heap by using conservative OOP-finding, and to move an object

by changing only the content of the OT entry. At the end of scavenging, all unmarked

(dead) OT entries are reclaimed by sweeping all OT entries.

The complete algorithm of the collector I is shown in Appendix A.1.

4.5 Dividing Object Table

Generation scavenging is efficient because scavenging just the new generation is much

faster than a full garbage collection and scavenging live objects is faster than sweeping

dead ones. However, in our approach, all OT entries belonging to all generations must

be swept to reclaim dead ones. This is a serious problem for efficiency because it takes

a constant time at every scavenging and the pause time becomes proportional to the

number of OT entries. For efficiency, the number of OT entries should be small. But

the small number of OT entries causes a limitation on the number of objects used in

programs.
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To reduce the number of scans of OT entries, the OT is also divided into two

generations, the new OT and the old OT, and the collector scans only the new OT

at scavenging. The new OT has a fixed number of OT entries that usually point to

new objects. The old OT has a variable number of OT entries that only point to old

objects. Since new objects are never pointed to from old OT entries, new objects are

scavenged by using only the new OT. When a new object is tenured into old space,

the object is moved to old space and the OT entry that points to the object is also

moved to the old OT. If the OT entry is referred to from the stack or registers, the

OT entry is not moved because of a constraint of conservative OOP-finding. However,

such a case hardly happens, because the number of objects referred to from the stack

or registers are small and they are usually short-lived, i.e., not tenured.

4.6 Collector II

We describe the collector II that is a modified version of the collector I employing

the divided OT. It scans the stack and registers conservatively by using conservative

OOP-finding but the heap precisely to move OT entries, so object formats in the

heap must be recognizable by the collector II.

The OT entry format of the collector II is nearly same as that of the collector I.

In addition to the fields of the OT entry of the collector I, each OT entry has the

flag indicating that the OT entry is forwarded (isOTForwarded), and the encoded

object information (objInfo) which is used to interpret the object format, including

the locations of pointer fields. In dynamically-typed object-oriented languages, such

an information is typically a pointer to the class object that knows the format of its

instances. The C language declaration for the OT entry is as follows:
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typedef struct otEntry {

word_t *contents;

struct {

unsigned isNew :1;

unsigned isForwarded :1;

unsigned isRemembered :1;

unsigned isOTForwarded:1;

unsigned :4;

unsigned age :8;

unsigned size :16;

} gcInfo;

struct objInfo_t objInfo;

} *oop;

Fig. 4.4 shows the heap structure and a sample object structure of the collector II.

The heap structure is the same as that of the collector I except for the OT. The OT

is divided into NewOT and OldOT. NewOT bottom and NewOT top show the lowest

and the highest address of the NewOT, and OldOT bottom and OldOT top show the

lowest and the highest address of the OldOT. All free new OT entries and all free old

OT entries are managed as a linked list respectively by using the contents field of the

OT entry.

In the collector II, only new objects are scavenged, so the C language implemen-

tation of conservative OOP-finding is as follows (In this implementation, the collector

II assumes that the size of the OT entry is sixteen bytes):

if ((NewOT_bottom <= value && value < NewOT_top) &&

(value & 15) == 0 &&

((oop)value)->gcInfo.isNew)

{

/* copy and forward */

}

Roughly speaking, the collector II reclaims objects by using Ungar’s generation

scavenging and reclaims OT entries by using partially conservative copying algorithm.

The main differences of the collector II from Ungar’s generation scavenging are to scan

roots of the system by using conservative OOP-finding (ambiguous roots), to move an
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object by changing only the content of the OT entry, and to tenure an object along

with its OT entry if it is not referred to from ambiguous roots. Unlike the collector I,

the collector II scans objects in the heap precisely which enables the new OT entries

that become old enough to be moved into the old OT. At the end of scavenging, all

unmarked (dead) new OT entries are reclaimed by sweeping all new OT entries.

The complete algorithm of the collector II is shown in Appendix A.2.

4.7 SPiCE Collector

The garbage collector of the runtime system of SPiCE, called the SPiCE collector, is

a practical implementation of generation scavenging with ambiguous roots. It adopts

an algorithm of the collector II, as object formats in the heap are recognizable by the

collector. We describe implementation details of the SPiCE collector.

4.7.1 Object Formats

The object format of SPiCE is very similar to that of Smalltalk. An OOP contains

a high-order 2-bit tag field, used to interpret the remaining 30-bits of information;

a 30-bit address of an OT entry, a 30-bit signed integer, or a 30-bit character. An

OT entry is 16 bytes, four bytes each for the pointer to a body of the object, for

the class OOP, for the size, and for scavenging fields that are bitfields used by the

SPiCE collector. An object body is usually made up of fields containing OOPs. A

body of a byte object, such as a string object, is made up of aligned 32-bit fields

containing byte values. Fig. 4.5 shows the object formats of SPiCE. Pointers to

SPiCE runtime functions and other objects not in the SPiCE heap, such as block

functions and user stacks, are represented in a 30-bit unsigned integer using the same

tag representation as an integer object. Their addresses can normally be represented

in a 30-bit unsigned integer. However, for example, the text segment of a shared

library in SunOS is mapped to the higher address, so the block function address is

not represented in a 30-bit unsigned integer. If SPiCE runtime addresses are higher
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than the range of a 30-bit unsigned integer, a 32-bit byte array object is used to

represent the high address.

4.7.2 Intergenerational References

Generational garbage collectors must detect pointers from older to younger genera-

tions, requiring a write barrier (or a store check). That is, a program cannot simply

store pointers into heap objects. Each potential store must be accompanied by check-

ing or recording operations, to ensure that if any pointers to younger generations are

created, they can be found later by the collector.

To keep track of intergenerational references from older to younger generations,

we use an objectwise pointer recording scheme, i.e., the remembered set. Also the

translator of SPiCE emits additional instructions along with each potential store, to

perform the require write barrier operations. Because the write barrier cost is not

small, optimizing the write barrier is important to overall garbage collector perfor-

mance. Therefore, the translator omits the write barrier for the following cases:

1. The write barrier for storing pointers into local variables need not to be emitted

because such variables are allocated on stack frames and stack frames are the

roots of garbage collection.

2. The write barrier for storing immediate objects such as integers or characters

need not to be emitted because storing immediate objects does not cause inter-

generational references. Storing immediate objects can be identified only if the

right hand of an assignment expression is a integer literal or a character literal.

3. The write barrier for storing old objects need not to be emitted because storing

old objects does not cause intergenerational references. Storing old objects can

be identified only if the right hand of an assignment expression is a literal, a

class name, or a shared variable.

Some objects such as literal objects, class objects, and shared variable objects are

allocated with their OT entries in the data area. Since old objects are never reclaimed
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in generation scavenging1, the SPiCE collector treats these objects as old objects. If

these objects refer to new objects, they are registered in the remembered set.

4.7.3 Roots of the System

The SPiCE collector is executed using the kernel stack and it scavenges all live new

objects that are reachable from the roots and the remembered set. The roots consist

of the user stacks, registers, and the data area. The user stacks are scanned by

using conservative OOP-finding. Registers are scanned by examining the user stacks

because registers are saved on the user stacks when a process is switched or setjmp

is called. An object is never referred to from the kernel stack because it is used only

at the time of system initialization, system finalization, and garbage collection. For

efficiency, the SPiCE collector has knowledge of pointer locations in the data area.

Thus, it scans references only from the user stacks and the known pointer locations in

the data area. Fig. 4.6 shows a memory layout in the process image of an operating

system.

4.7.4 Tenuring Policy

Generational garbage collectors assume that young objects are likely to die and old

ones are likely to continue to live, and concentrate the collector’s efforts on the younger

generations. When an object has survives some numbers of scavenges, it is moved

(tenured) to the next older generation.

If an object lives long enough to attain tenure but then dies, that is, an object

is tenured too fast, this will cause the older generation to fill up more quickly and

be collected more often. Since, in generation scavenging, the old objects are no

longer subject to collection, that is, they can only be collected by invoking a global

mark-and-sweep garbage collector, the choice of tenuring policies is very important.

1Old objects are reclaimed using (conservative) mark-and-sweep garbage collection as in the
Smalltalk system.
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We have adopted large object area (see Fig. 4.6) and demographic feedback-mediated

tenuring [Ungar and Jackson 1988; Ungar and Jackson 1992] as our tenuring policy.

A large object area keeps the data of all large objects such as bitmaps and strings.

In Ungar & Jackson scheme, the headers of these large objects are stored in the

youngest generation and then scavenged, but these large objects are never tenured

(i.e., their headers are retained in the youngest generation until the object died),

because the large object area can be made big enough to hold the data of all large

objects. The SPiCE collector uses OT entries as the headers of large objects.

Ungar’s generation scavenging associates with each object an explicit age which

is incremented each time the object is scavenged within a generation. An object is

tenured when its age count exceeds the limit (or tenure threshold) for the generation

in which it resides. This fixed-age tenuring policy has following problems: (1) If there

are very few objects being scavenged, there is no need to tenure any, but a fixed-age

tenuring policy will tenure objects that are old enough anyway; (2) When the new

area runs out of space in the midst of a scavenge, the remaining scavenged objects

are tenured, regardless of age.

Demographic feedback-mediated tenuring policy dynamically determines the tenure

threshold according to the statistics. If, after a scavenge, the survivor size are small,

this policy will set the tenuring threshold to infinity for the next scavenge; no objects

will be tenured the next time. If, on the other hand, the survivor size are large, then

this policy will set the tenuring threshold to a value designed to tenure the excess

data on the next scavenge. This value is computed by using a table indexed by age

containing the number of data bytes for each age.

The Ungar & Jackson policy determines the tenuring threshold according to the

size of the survived objects, but, in addition to the size, the SPiCE collector deter-

mines the tenuring threshold according to the number of the objects pointed to from

the new OT. When the number of the objects pointed to from the new OT exceeds a

certain threshold, the tenuring threshold is decreased to make the objects that exceed

the tenuring threshold move into the old space, and freed new OT entries are made
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reusable.

4.8 Summary

Our technique called generation scavenging with ambiguous roots enables generation

scavenging, which is very suited for pure object-oriented languages, to work without

language support for garbage collection. It inherits the advantages of generation

scavenging such as high performance, non-disruptive pauses, and compaction of the

heap. In addition to these advantages, it enables the combination of programs written

in multiple languages, some of which do not offer any support for garbage collection.

We presented two algorithms of generation scavenging with ambiguous roots: the

collector I and the collector II. Both of them use conservative OOP-finding with

OT. The collector I needs not to recognize object formats in the heap and reclaims

OT entries by using conservative mark-and-sweep algorithm. The collector II needs

to recognize object formats in the heap and reclaims OT entries by using partially

conservative copying algorithm. The collector II is less conservative than the the

collector I, but the collector II is more efficient.

The SPiCE collector is a practical implementation of the collector II and enables

the generated C data structures (Smalltalk objects) to be mixed with other languages’

data structures. We evaluate the effectiveness of the SPiCE collector in Section 5.4.
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Chapter 5

Evaluation of SPiCE

Recall that issues on the translation are as follows:

1. It may impose some restrictions on the functionality of pure object-oriented

languages since a clean translation from a pure object-oriented language to a

conventional language is difficult due to a language gap.

2. For preserving the functionality of pure object-oriented languages, the generated

code may be so stylized that it is neither portable nor interoperable with code

written in other languages.

3. The two-stage translation into machine code may result in inefficient code.

In this chapter, we evaluate SPiCE with respect to these issues. First, Section

5.1 discusses the restrictions on Smalltalk that SPiCE imposes. Then, Section 5.2

discusses interoperability of the generated C code. Following this, Section 5.3 shows

the performance of the generated C code compared to the fastest Smalltalk imple-

mentation, and Section 5.4 shows the performance of the garbage collector of SPiCE.

Finally, Section 5.5 compares our work with related work.
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5.1 Restrictions on Smalltalk

Smalltalk has some reflective facilities; programs can examine their activation records

and can redefine their method [Foote and Johnson 1989]. However, these reflective

facilities are not usually used in the application programming and they are only used

in the exploratory programming. For example, these facilities are used to construct a

backtracking facility in Smalltalk [Lalonde and Gulik 1988]. Preserving the reflective

facilities are beyond the translation approach and all translators including SPiCE

impose a restriction on the reflective facilities. Another restriction of SPiCE is that a

modification of the original classes that correspond to the runtime replacement classes

is not permitted. Since these classes are inherently part of the Smalltalk execution

model, the modification of them easily results in a crash of the Smalltalk system, so

most applications do not modify them.

Our experiences with SPiCE show that these restrictions do not interfere with the

application programming and SPiCE can translate existing Smalltalk applications

as they are. Currently, five large and practical Smalltalk applications have been

translated by SPiCE. All of them were translated into C without modifying the

application code. These applications are:

• Smalltools that is a Mail and News browser having 97 application classes;

• SmallWalker1 that is a World-Wide Web browser having 164 application classes

(See Fig. 5.1);

• a production line simulator having 31 application classes;

• a network traffic monitoring tool having 112 application classes; and

• ObjectCast that is a commercial CASE tool supporting an object-oriented soft-

ware development having 195 application classes.

1SmallWalker is written by the author of this thesis and it is available from
ftp://st.cs.uiuc.edu/pub/Smalltalk/st80 r41/SmallWalker1.0/.
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Figure 5.1: SmallWalker: A Smalltalk WWW browser
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The translator of SPiCE is implemented on ParcPlace Smalltalk Release 4.1. Its

runtime system is implemented in 39,000 lines of C code and 1600 lines of assembly

code, and runs on the SunOS (SPARC-based machine) and the Linux (Intel 386-,

486-, Pentium-based machine).

Portability of the generated C code was tested between different processors and

between different C compilers. The order of the arguments evaluated on a SPARC-

based machine is contrary to a Intel 386-based machine. The generated C code was

compiled and ran correctly under the SunOS using both Sun C compiler (non ANSI C

compiler) and GNU C compiler (ANSI C compiler). The same code was also compiled

and ran correctly under the Linux using GNU C compiler.

The translator and the runtime system are very stable. Smalltools and Small-

Walker translated by SPiCE are used daily by many researchers at Fuji Xerox Co.,

Ltd. under the SunOS and the Linux.

5.2 Interoperability with C

SPiCE generates an object-oriented stylized C code, that is, all objects are referred

to from OOPs and all computation are performed by sending messages to objects.

However, the generated C code uses as much of C facilities as possible: the generated

C code follows the C procedure call/return mechanism and the generated C data

structures (Smalltalk objects) can be safely referred to from C variables. Therefore,

the generated C code is easy to interoperate with other C programs or code written

in other languages.

We show a small example of the combination of code originally written in Smalltalk

with code written in C. Fig. 5.2 shows a sorting C program using the translated

Smalltalk class libraries. First, a SortedCollection object is created (line 8). Then,

strings are read from the terminal, converted into String objects, and added to the

SortedCollection object (line 9–12). Finally, the contents of the SortedCollection object

are copied into character array and printed in order (line 13–18). Sorting is done by
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1 sort()

2 {

3 extern sp_asc sp_g_SortedCollection;

4 extern sp_symbol s_new, s_add_, s_at_;

5 sp_oop collection, string;

6 int i, size;

7 char line[1024];

8 collection = ms_0(sp_g_SortedCollection.asc_value, &s_new);

9 while(gets(line) != NULL) {

10 ms_1(collection, &s_add_, sp_STString(line));

/* or,

11 * sp_m_SortedCollection_add_(P2(collection, sp_STString(line)));

*/

12 }

13 size = sp_oopIntVal(ms_0(collection, &s_size));

14 for (i = 1; i <= size; i++) {

15 string = ms_1(collection, &s_at_, sp_asSmallInt(i));

16 sp_copyToCString(string, line, sizeof(line));

17 printf("%s\n", line);

18 }

19 }

Figure 5.2: Combination of Smalltalk and C
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the SortedCollection object. This SortedCollection object is not reclaimed by garbage

collection during the execution of this function because it is referred to from a stack

frame. If a programmer knows the type (class) of a message receiver, the programmer

can directly call a function corresponding to the method invoked by the message. For

example, line 11 can be substituted for line 10.

We also show a more practical example, a Xebec document class browser (See

Fig. 5.3). Xebec is a document database management system that can handle multi-

ple document types and multiple document architectures [Nakatsuyama et al. 1995;

Kyojima and Yasumatsu 1995]. Xebec also manages document schemata of the Xebec

data model and document classes that are logical structures expressed in document

architectures, such as document type definition (DTD) of standard generalized markup

language (SGML) [International Standardization Organization 1986]. Xebec is im-

plemented on the ObjectStore database system [Lamb et al. 1992] and written in

OC++ that is a persistent C++ for the ObjectStore. Xebec document class browser

can search and browse persistent document classes with a graphical user interface.

The combination of code originally written in Smalltalk with code written in OC++

is achieved by an external C interface of OC++, and the design of the combination is

based on proxy pattern, which provides a surrogate or placeholder for another object

to control access to it [Gamma et al. 1994]. ObjectStore is very critical to memory ac-

cess because ObjectStore loads persistent objects into virtual memory by using page

fault. However, our garbage collection can coexist with the ObjectStore mechanism.

5.3 Performance in C

We compared the performance of the generated C code with the ParcPlace Smalltalk

implementation. The ParcPlace Smalltalk implementation called HPS is currently the

fastest Smalltalk implementation and uses the Deutsch-Schiffman technique [Deutsch

and Schiffman 1984]. This technique dynamically translates compiled methods into
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Figure 5.3: Xebec document class browser
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machine code and maps contexts onto frames on stacks prepared in the virtual ma-

chine. The runtime system of SPiCE uses primitives of HPS except for processes,

blocks, and exception handling.

We used the following four programs to compare the performance: Smalltalk

system benchmarks [McCall 1983], Richards operating system simulation benchmark

[Chambers et al. 1989], Lisp interpreter, and color image quantization using ordered

dither. We first measured the performances of all programs on HPS, and translated

all programs using SPiCE, then measured the performance of the generated C code.

We used a Sun4/110 (SPARC 14.28MHz) with 20 Mbytes memory, and a Sun C

compiler with optimization level 2 (with −O2 option).

Table 5.1 presents the results of the Smalltalk system benchmarks. The first

two columns show the performance rates of SPiCE and HPS compared with Dorado

[Deutsch 1983]. The third column shows the ratio of SPiCE to HPS, and the larger

numbers indicate the better performance of SPiCE. The top four benchmarks in table

5.1 are called macro-benchmarks, and these test the performance of the Smalltalk sys-

tem at high-level activities. The rest of the benchmarks are called micro-benchmarks,

and these test the basic bytecodes and primitives.

In macro-benchmarks that show the performance at the application level, SPiCE

runs between 0.95 times to 1.48 times the speed of HPS. This shows that the translated

application by SPiCE runs at roughly the same speed as HPS. In micro-benchmarks,

the results of SPiCE and HPS are very different due to their implementations. Some

of the lower performances of SPiCE in micro-benchmarks result from the in-line prim-

itives of HPS. HPS translates arithmetic and relational operations in-line with a call

to a runtime routine if the operands are not SmallInteger. The loading of tempo-

rary variables in SPiCE is much faster than in HPS because temporary variables are

translated into those in C.

Table 5.2 presents the execution times of the other benchmark programs. The

third column shows the ratio of HPS to SPiCE, and the larger numbers indicate

the better performance of SPiCE. SPiCE runs between 0.93 times to 1.78 times the
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Table 5.1: Smalltalk system benchmarks

Benchmark SPiCE HPS SPiCE/HPS
(rate) (rate) (ratio)

KeyboardLookAhead 326.923 274.194 1.19
KeyboardSingle 330.804 283.117 1.17
TextDisplay 336.842 355.556 0.95
TextEditing 329.687 223.28 1.48
AsFloat 836.667 836.667 1.0
BasicAt 184.0 153.333 1.2
BasicAtPut 179.832 164.615 1.09
FloatingPointAddition 492.0 1230.0 0.4
Perform 161.111 120.833 1.33
StringReplace 10260.0 10260.0 1.0
TextScanning 208.0 208.0 1.0
LoadInstVar 153.631 74.3243 2.07
LoadLiteralIndirect 1593.33 199.167 8.0
LoadLiteralNRef 2.75e7 458.333 60000.0
LoadQuickConstant 4.91e7 446.364 110000.0
LoadTempNRef 2.75e7 275.0 100000.0
LoadTempRef 3.9e7 327.731 119000.0
PopStoreInstVar 96.648 24.7143 3.91
PopStoreTemp 92.5532 133.846 0.69
3div4 1122.0 561.0 2.0
3lessThan4 89.5522 163.636 0.55
3plus4 100.0 265.0 0.38
3times4 76.2548 119.697 0.64
ActivationReturn 711.429 553.333 1.29
ShortBranch 1.23e7 1.23e7 1.0
WhileLoop 69.5161 46.3441 1.5
ArrayAt 187.0 187.0 1.0
ArrayAtPut 156.429 115.263 1.36
Size 240.0 180.0 1.33
StringAt 261.429 305.0 0.86
StringAtPut 253.333 285.0 0.89
Class 630.0 315.0 2.0
Creation 89.2031 150.87 0.59
EQ 598.361 214.706 2.79
PointCreation 193.651 457.5 0.42
PointX 164.762 150.435 1.1
StreamNext 495.556 371.667 1.33
StreamNextPut 490.521 398.077 1.23
Value 177.857 166.0 1.07
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Table 5.2: Benchmark running times

Benchmark SPiCE HPS HPS/SPiCE
(ms) (ms) (ratio)

Richards Benchmark 8225 9232 1.12
Lisp Interpreter 27366 48802 1.78
Quantization 8485 7900 0.93
Modified Quantization§ 7310 — 1.08

§The translated (Depth1Image) rowAt:putAll:startingAt: C function is modified

speed of HPS. These results are similar to those of the macro-benchmarks. The

performance of SPiCE using the Lisp interpreter is 1.78 times faster than HPS. In

the Lisp interpreter, a stack grows very deep because of the recursive evaluation of

S-expressions. In HPS, when the stack becomes full, frames on the stack are flushed

out and converted into context objects, degrading the performance. In color image

quantization, HPS is faster because the percentage of arithmetic operations in this

program is large. We modified the translated C function rowAt:putAll:startingAt: in

the Depth1Image class, which is most time-consuming, to make use of C arithmetic

operations instead of runtime arithmetic calls, and this made SPiCE 1.08 times faster

than HPS.

Table 5.3 presents an execution profile of the runtime system using Smalltools,

described in Section 5.1, for three hours. The method lookup took 20.3 percent of

the total time. The runtime system checks external events such as keyboard input at

the time of method lookup. Arithmetic operations took 10.8 percent and scavenging

took 4.9 percent of the total time. Scavenging was executed 8051 times, and this

shows that the time for one scavenging execution is 551.21 (sec) / 8051 = 68 (msec),

and the interval between scavengings is 11285.4 (sec) / 8051 = 1.4 (sec). The pause

times for garbage collection are limited to about 68 msec, which is short enough to

run near real-time or interactive applications.
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Table 5.3: SPiCE runtime profile

Name running time percentage
(sec) (%)

Total 11285.4 —
MethodLookup 2288.56 20.3
Arithmetic 1221.23 10.8
Scavenging 551.21 4.9
Block Creation 438.61 3.9
Accessing 302.86 2.7

number of times scavenging was executed: 8051 times
time for one scavenging execution: 68 msec
interval between scavengings: 1.4 sec

5.4 Performance of Garbage Collection

We measured the performance of the SPiCE collector on a Sun SPARCStation 1+

(SPARC 25MHz) with 20 Mbytes memory. The size of an OT entry is 16 bytes and

the size of the new OT is 320 Kbytes (20 K entries). The new space consists of a

creation space and two survivor spaces. The size of the creation space is 700 Kbytes,

and the size of the two survivor spaces is 150 Kbytes each, making the total size of

the new space 1000 Kbytes. The size of the old space including the old OT is 1000

Kbytes, and the size of the large object area is 1000 Kbytes. The total size of the

heap is 3320 Kbytes.

We used the following three programs to measure the performance of the SPiCE

collector: Lisp interpreter (lisp), Smalltalk parser (parser), and the Smalltalk envi-

ronment (environment). All programs are originally written in Smalltalk and then

translated into C by SPiCE. With the Lisp interpreter, we ran a tower of hanoi.

With the Smalltalk parser, we parsed a whole source code of the Smalltalk system,

the size of it is 2222520 bytes. With the Smalltalk environment, we edited text files

and played games during an interactive run for an hour.

Table 5.4 shows the results of the measurements of the performance of the SPiCE
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Table 5.4: Performance of the SPiCE collector

program lisp parser environment
total execution time (sec) 88.0 109.4 3779.6
garbage collection time (%) 3.9 1.5 6.9
pause time (msec) 54 46 97

for scavenging 12 4 55
for OT reclamation 42 42 42

number of created objects 138576 689383 52681486
size of created objects (Kbytes) 25976.5 17154.4 619074.0
storage allocation rate (Kbytes/sec) 295.2 156.8 163.8
number of new objects referred to from the stacks 156 28 43
number of old references from new OT 19 19 23

collector. The ratio of garbage collection time to the total execution time was between

1.5 % to 6.9 %. The pause time of garbage collection was between 46 msec to 97 msec,

and this is short enough to run near real-time or interactive applications. The OT

reclamation takes a constant time (42 msec) in all cases and it spends between 43 %

(42/97) to 91 % (42/46) in the pause time. This result shows the usefulness of the

division of the OT into two generations.

The storage allocation rate was between 156.8 Kbytes/sec to 295.2 Kbytes/sec. At

such a high storage allocation rate, the total heap size, which was 3320 Kbytes, was

enough to run these programs. This result shows the effectiveness of the compaction

of the heap.

The average number of new objects referred to from the stacks at scavenging was

between 28 to 156, and the ratio of it to the total number of new OT entries was

under 0.8 (156/20K) % in all cases. The number of old references from the new OT

at the end of the execution of the program was between 19 to 23, and the ratio of it

to the total number of new OT entries was under 0.2 % (23/20K) in all cases. These

results show that when new objects are tenured into the old space, almost all new

OT entries that point to them can be moved to the old OT together.

Table 5.5 shows the results of the measurements of the runtime overhead of the

garbage collection. There are two runtime overheads: indirect referencing through the
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Table 5.5: Runtime overhead of garbage collection

program lisp parser environment
number of indirect referencing 11021343 47408450 571588028
average cycles of LD instruction 2.72 2.36 (3.0)
indirect referencing time (%) 1.4 4.1 (1.8)
number of store checking 131447 2288164 2022754
store checking time (%) 0.1 1.1 0.0
total overhead time (%) 1.5 5.2 (1.8)
total overhead time including gc (%) 5.4 6.7 (8.7)

OT and the write barrier to keep track of references from older to younger generations.

The runtime overhead of indirect referencing was calculated from the number of

indirect referencing and the average number of cycles of LD instruction. The runtime

overhead of one indirect referencing (one memory indirection) corresponds to one LD

instruction of SPARC. On SPARCStation 1+, if memory cache is hit, LD instruction

takes 2 cycles, otherwise, it takes 15 cycles. So, we measured a hit rate of memory

cache by using Spa [Irlam 1991] and calculated the average number of cycles of LD

instruction. With the Smalltalk environment, we were unable to use Spa because a

program runs at 600 times slower by using Spa. Since the average number of cycles

of LD instruction in the Lisp interpreter was 2.72 and that in the Smalltalk parser

was 2.36, we assumed that the average number of cycles of LD instruction in the

Smalltalk environment was 3.

The ratio of the total overhead time to the total execution time was between 1.5

% to 5.2 %, and even if the garbage collection time is added, it was between 5.4 %

to 8.7 %. This results shows the effectiveness of the SPiCE collector even though it

has some runtime overheads for garbage collection. Incidentally, in an experimental

evaluation, conservative mark-and-sweep collection spends between 10.6 % to 19.0 %

of the total execution time, and conservative generational collection spends between

8.9 % to 19.2 % of the total execution time [Boehm et al. 1991].
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5.5 Comparison with Related Work

Through the evaluation, SPiCE has proven to be able to generate portable, effi-

cient, and interoperable C code, and to impose minimal restrictions on Smalltalk

which enables the translation of existing Smalltalk applications as they are. None

of the other Smalltalk translators has succeeded to do such translation. Producer,

Smalltalk application compilers, and Orchard impose much restrictions on Smalltalk.

Babel and Smalltalk/X are not suited for interoperating with programs written in

other languages. All of them generate inefficient code less than the fastest Smalltalk

implementation.

The C interoperability of Smalltalk has recently been improved. C Programming

Objectkit [Par 1992] from ParcPlace enables Smalltalk to inter-call procedures with C.

This C language interface has two disadvantages compared with our approach. First,

inter-calling procedures with C has the same performance overhead as the primitive

calls in the Smalltalk system. To call-out to the C procedure, the runtime state of

Smalltalk must be saved, then the runtime state of C must be restored, and vice

versa. Second, programmers must be careful of memory management. A C pointer

to a Smalltalk object cannot be maintained across call-backs. Our approach can

maintain a C pointer to a translated Smalltalk object owing to conservative OOP-

finding.

The Deutsch-Schiffman technique is used to implement the virtual machine, but

it is interesting to compare it with our work. This technique dynamically maps

compiled methods and contexts onto machine code and stack frames while our system

maps them statically. The performance advantages of dynamic translation over static

translation are that it can translate arithmetic and relational operations in-line, which

can be written at assembler level, and that it can use in-line cache that modifies the

machine code at runtime. SPiCE executes applications at roughly the same speed as

ParcPlace Smalltalk using dynamic translation. It seems to us that this result is not

too bad. None of the other Smalltalk translators could run the translated application

at the same speed as the ParcPlace Smalltalk.
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Chapter 6

Conclusion

6.1 Summary of Main Results

This thesis has proposed a translation method from Smalltalk into interoperable C

code. The usefulness and effectiveness of the proposed method have been evaluated

and the proposed method has proven to be able to generate portable, efficient, and

interoperable C code, and to impose minimal restrictions on Smalltalk which enables

the translation of existing Smalltalk applications as they are. For example, five large

and practical Smalltalk applications, including one commercial application, have been

translated without modifying the application code. Moreover, a practical application

written in Smalltalk and a persistent C++ has been developed. The performance of

the generated C code is roughly the same as the fastest Smalltalk implementation.

In this thesis, we have proposed the design and implementation of SPiCE that is a

system for translating Smalltalk into C. The key feature of the translation is a creation

of runtime replacement classes, which implements the same functionality of Smalltalk

classes that are inherently part of the Smalltalk execution model. The creation of

runtime replacement classes is based on the concept of mapping activation record

objects of Smalltalk onto stack frames, and mapping compiled code of Smalltalk

onto machine code. The runtime replacement classes encapsulate the differences of

the execution model between Smalltalk and C, and they enable the generation of
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portable, efficient, and interoperable C code while preserving the functionalities of

Smalltalk.

We have also proposed a new garbage collection technique called generation scav-

enging with ambiguous roots, which is suitable for object-oriented applications and

combining programs written in multiple languages, some of which do not offer any

support for garbage collection. The key idea of our garbage collection technique is

the use of conservative stack scanning and indirect referencing together. This tech-

nique fills the gaps of the data model (storage management) between Smalltalk and

C, and enables the generated C data structures (Smalltalk objects) to be mixed with

other languages’ data structures. Our garbage collection spends less than 7 % of the

total execution time, and even if other runtime overheads for garbage collection are

included, it spends less than 9 % of the total execution time.

Our technique of the runtime replacement classes is rather specific to the Smalltalk

language and environment, but the concept of mapping activation record objects onto

stack frames and mapping compiled code onto machine code is helpful to implement

a translator for other high level languages such as Self and Scheme.

Our garbage collection technique is applicable to other languages’ implementation

or runtime system. The key idea of our garbage collection, that is, the use of conser-

vative stack scanning and indirect referencing together, allows the implementation of

other kinds of copying or compacting garbage collection in a conservative manner.

SPiCE has proven to be practical and stable through the daily use of translated

applications by many researchers at Fuji Xerox Co., Ltd..

6.2 Future Work

An issue of SPiCE is that it executes translated applications roughly at the same speed

as those of the original Smalltalk. At the start of the SPiCE project, we thought that a

straightforward translation of Smalltalk into C would result in a performance improve-

ment, but through further studies it turns out that the straightforward translation
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does not improve the performance and other optimization techniques are required.

However, SPiCE has enough room to use other optimization techniques.

There are some optimization techniques that can be used in SPiCE:

• Compressed dispatch tables

Compressed dispatch tables implement message dispatching with a runtime

overhead of one memory indirection plus an equality test. The technique is

similar to virtual function table lookup of C++, but it reduces the space re-

quirements of dispatch tables. It can offer constant time performance. Many al-

gorithms for compressing dispatch tables have been proposed [Dixon et al. 1989;

Andre and Royer 1992; Driesen 1993; Amiel et al. 1994; Driesen and Holzle

1995]. These optimization techniques can be used in SPiCE.

• Static type prediction

The Self compiler uses customized compilation that generates multiple versions

of machine code according to the type of receiver of a message. Because the

type of receiver can be identified only at execution time, customized compilation

cannot be used in SPiCE as is. However, when the type of receiver is unknown,

the Self compiler uses static type prediction to generate better code for some

common situations. Certain messages are more likely to be sent to some types

of receivers than others; arithmetic messages such as +, −, and < are likely

to be sent to integers. Thus, the Self compiler statically predicts types and

generates optimized code including runtime type tests to verify its prediction.

This optimization technique can be used in SPiCE.

• Type inferencing

Identifying the class of the receiver, i.e. type inferencing, is very difficult in

Smalltalk [Suzuki 1981; Borning and Ingalls 1982]. However, recently the carte-

sian product algorithm [Agesen 1995] has been proposed. It can infer concrete

types of object-oriented programs, and by incorporating it into the Self com-

piler, it can in-line over 95 % of all message sends. Since the Self language and
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environment is very similar to the Smalltalk language and environment, this

algorithm can be adopted to SPiCE.

Another issue of SPiCE is that it does not support identification of the classes and

methods required to execute an application. Therefore, the classes to be translated

must be specified by the user and all the methods in the translated classes are trans-

lated. To reduce the size of translated applications, the classes and methods required

must be identified. The size of the text area occupied more than 70 percent of the file

size of the translated application, so identifying the methods is very important. One

approach to reduce the size is to use the cartesian product algorithm. This algorithm

was also used to extract small and self-contained applications from the Self program-

ming environment. Another approach is to add a modular facility to Smalltalk like

Modular Smalltalk [Wirfs-Brock and Wilkerson 1988], which makes an application

into a collection of modules and clarifies the classes and methods required to execute

the application.

For interoperability, our approach addresses the shared data structures, the shared

address space, and the shared threads of control. The problem of shared data repre-

sentation is beyond the scope of our approach. On the other hand, the RPC-based

approaches have made much efforts on the shared data representation. For example,

recent RPC-based approaches such as Horus [Gibbons 1987] and Matchmaker [Jones

et al. 1985] automate the generation of code that maps the representations of data

types between one language/machine and another via an interface description lan-

guage (IDL). Their results of the efforts such as IDL should be incorporated in our

approach.
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Appendix A

Algorithm of Garbage Collection

A.1 Algorithm of the Collector I

We present the algorithm of the Collector I in the C language:

struct space {
word_t *firstWord; /* first word of space */
word_t *boundary; /* boundary of space */
int size; /* number of used words in space */

};

typedef struct otEntry {
word_t *contents;
struct {

unsigned isNew :1;
unsigned isForwarded :1;
unsigned isRemembered:1;
unsigned :5;
unsigned age :8;
unsigned size :16;

} gcInfo;
} *oop;

struct otEntry OT[MaxObject];
struct space

CreationSpace,
PastSSpace, /* PastSurvivorSpace */
FutureSSpace, /* FutureSurvivorSpace */
OldSpace;

oop RemSet[MaxRemembered]; /* RememberedSet */
int RemSetSize;
}

/∗
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The main routine, generationScavengeWithAmbiguousRoots(), first scavenges the
new objects immediately reachable from ambiguous roots.

Next, it scavenges the new objects immediately reachable from old ones. Then it scav-
enges those that are transitively reachable. If this results in a tenuring, the tenuree gets
remembered, and it first scavenges objects adjacent to the tenuree, then scavenges the ones
reachable from the tenured. This loop continues until no more reachable objects are left.

At that point, PastSSpace is exchanged with FutureSSpace and free OT entries are
reclaimed.
∗/

generationScavengeWithAmbiguousRoots()
{
int prevRemSetSize;
int prevFutureSSpaceSize;

scavengeAmbiguousRoots();

prevRemSetSize = 0;
prevFutureSSpaceSize = 0;

while (TRUE) {
scavengeRemSetStartingAt(prevRemSetSize);
if (prevFutureSSpaceSize == FutureSSpace.size)
break;

prevRemSetSize = RemSetSize;
scavengeFutureSSpaceStartingAt(

prevFutureSSpaceSize);
if (prevRemSetSize == RemSetSize)
break;

prevFutureSSpaceSize = FutureSSpace.size;
}

exchange(PastSSpace, FutureSSpace);

reclaimOTEntries();
}

/∗
scavengeAmbiguousRoots() inspects all the words in ambiguous roots (the stack, reg-

isters, and the data area) by using conservative OOP-finding. If the word refers to any
valid new OT entries, its new referents are scavenged.
∗/

scavengeAmbiguousRoots()
{
word_t sp;
int reg;
oop value;

for (sp = Stack_bottom;
sp <= Satck_top;
sp += FIND_INCREMENT)

{
value = (oop)*sp;
if (conservativePointerFinding(value))
if (! value->gcInfo.isForwarded)
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copyAndForwardObject(value);
}
for (reg = Register_first;

reg <= Register_last;
reg += 1)

{
value = (oop)processorRegister(reg);
if (conservativePointerFinding(value))
if (! value->gcInfo.isForwarded)

copyAndForwardObject(value);
}
for (sp = Area_bottom;

sp <= Area_top;
sp += FIND_INCREMENT)

{
value = (oop)*sp;
if (conservativePointerFinding(value))
if (! value->gcInfo.isForwarded)

copyAndForwardObject(value);
}

}

/∗
scavengeRemSetStartingAt(dest) traverses objects in the remembered set starting at

the dest-th one. If the object does not refer to any new objects, it is removed from the set.
Otherwise, its new referents are scavenged.
∗/

scavengeRemSetStartingAt(dest)
int dest;
{
int src;

for (src = dest; src < RemSetSize; ++src)
if (scavengeReferentsOf(RemSet[src])) {
RemSet[dest++] = RemSet[src];

}
else
RemSet[src]->gcInfo.isRem = FALSE;

RemSetSize = dest;
}

/∗
scavengeFutureSSpaceStartingAt(n) inspects words starting at the n-th word of

FutureSSpace by using conservative OOP-finding. If the word refers to any valid new
OT entries, its new referents are scavenged.
∗/

scavengeFutureSSpaceStartingAt(n)
int n;
{
oop value;

for (;
n < FutureSSpace.size;
n ++)
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{
value = (oop)FutureSSpace.firstWord[n];
if (conservativePointerFinding(value))
if (! value->gcInfo.isForwarded)

copyAndForwardObject(value);
}

}

/∗
scavengeReferentsOf(obj) inspects all the words in obj by using conservative

OOP-finding. If the word refers to any valid new OT entries, its new referents are scav-
enged, and returns truth. If there are no new referents, it returns falsity.
∗/

scavengeReferentsOf(obj)
oop obj;
{
int i;
int foundNewReferent;
oop value;

foundNewReferent = FALSE;
for (i = 0; i < obj->gcInfo.size; i++) {

value = (oop)obj->contents[i];
if (conservativePointerFinding(value)) {
foundNewReferent = TRUE;
if (! value->gcInfo.isForwarded)

copyAndForwardObject(value);
}

}
return foundNewReferent;

}

/∗
copyAndForwardObject(obj) copies a new object either to FutureSSpace, or if it is to

be tenured, to OldSpace. It leaves a forwarding pointer behind.
∗/

copyAndForwardObject(obj)
oop obj;
{
word_t *newLocation;

if (obj->gcInfo.age < MaxAge) {
++ obj->gcInfo.age;
newLocation = copyObjectToSpace(

obj->contents,
obj->gcInfo.size,
FutureSSpace);

obj->gcInfo.isForwarded = TRUE;
}
else {

newLocation = copyObjectToSpace(
obj->contents,
obj->gcInfo.size,
OldSpace);
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obj->gcInfo.isNew = FALSE;
RemSet[RemSetSize++] = obj;
obj->gcInfo.isRemembered = TRUE;

}

obj->contents = newLocation;
}

/∗
reclaimOTEntries() traverses all new entries in OT. If the entry is forwarded, its

isForwarded flag is reset to false. Otherwise, it is reclaimed into free OT list.
∗/

reclaimOTEntries();
{
int i;

for (i = 0; i < MaxObject; i++) {
if (OT[i].gcInfo.isNew)
if (OT[i].gcInfo.isForwarded)

OT[i].gcInfo.isForwarded = FALSE;
else

addFreeOTList(OT[i]);
}

}

A.2 Algorithm of the Collector II

We present the algorithm of the Collector II in the C language:

struct space {
word_t *firstWord; /* first word of space */
word_t *boundary; /* boundary of space */
int size; /* number of used words in space */

};

typedef struct otEntry {
word_t *contents;
struct {

unsigned isNew :1;
unsigned isForwarded :1;
unsigned isRemembered :1;
unsigned isOTForwarded:1;
unsigned :4;
unsigned age :8;
unsigned size :16;

} gcInfo;
struct objInfo_t objInfo;

} *oop;

struct otEntry NewOt[MaxNewObject],
OldOT[MaxOldObject];

83



struct space
CreationSpace,
PastSSpace, /* PastSurvivorSpace */
FutureSSpace, /* FutureSurvivorSpace */
OldSpace;

oop RemSet[MaxRemembered]; /* RememberedSet */
int RemSetSize;

/∗
The main routine, generationScavengeWithAmbiguousRoots(), first scavenges the

new objects immediately reachable from ambiguous roots.
Next, it scavenges the new objects immediately reachable from old ones. Then it scav-

enges those that are transitively reachable. If this results in a tenuring, the tenuree gets
remembered, and it first scavenges objects adjacent to the tenuree, then scavenges the ones
reachable from the tenured. This loop continues until no more reachable objects are left.

At that point, PastSSpace is exchanged with FutureSSpace and free NewOT entries are
reclaimed.
∗/

generationScavengeWithAmbiguousRoots()
{
int prevRemSetSize;
int prevFutureSSpaceSize;

scavengeAmbiguousRoots();

prevRemSetSize = 0;
prevFutureSSpaceSize = 0;

while (TRUE) {
scavengeRemSetStartingAt(prevRemSetSize);
if (prevFutureSSpaceSize == FutureSSpace.size)
break;

prevRemSetSize = RemSetSize;
scavengeFutureSSpaceStartingAt(

prevFutureSSpaceSize);
if (prevRemSetSize == RemSetSize)
break;

prevFutureSSpaceSize = FutureSSpace.size;
}

exchange(PastSSpace, FutureSSpace);

reclaimNewOTEntries();
}

/∗
scavengeAmbiguousRoots() inspects all the words in ambiguous roots (the stack, reg-

isters, and the data area) by using conservative OOP-finding. If the word refers to any
valid new OT entries, its new referents are scavenged.
∗/

scavengeAmbiguousRoots()
{
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word_t sp;
int reg;
oop value;

for (sp = Stack_bottom;
sp <= Satck_top;
sp += FIND_INCREMENT)

{
value = (oop)*sp;
if (conservativePointerFinding(value))
if (! value->gcInfo.isForwarded)

copyAndForwardObject(value, TRUE);
}
for (reg = Register_first;

reg <= Register_last;
reg += 1)

{
value = (oop)processorRegister(reg);
if (conservativePointerFinding(value))
if (! value->gcInfo.isForwarded)

copyAndForwardObject(value, TRUE);
}
for (sp = Area_bottom;

sp <= Area_top;
sp += FIND_INCREMENT)

{
value = (oop)*sp;
if (conservativePointerFinding(value))
if (! value->gcInfo.isForwarded)

copyAndForwardObject(value, TRUE);
}

}

/∗
scavengeRemSetStartingAt(dest) traverses objects in the remembered set starting at

the dest-th one. If the object does not refer to any new objects, it is removed from the set.
Otherwise, its new referents are scavenged.
∗/
scavengeRemSetStartingAt(dest)
int dest;
{
int src;

for (src = dest; src < RemSetSize; ++src)
if (scavengeReferentsOf(RemSet[src])) {
RemSet[dest++] = RemSet[src];

}
else
RemSet[src]->gcInfo.isRemembered = FALSE;

RemSetSize = dest;
}

/∗
scavengeFutureSSpaceStartingAt(n) traverses objects starting at the n-th word of

FutureSSpace. At this point, a reversed pointer is forwarded.
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For simplicity here, an object is just an array of pointers, so the objInfo field in the
OT entry is not used.
∗/

scavengeFutureSSpaceStartingAt(n)
int n;
{
oop obj;
int dontCare;

for (;
n < FutureSSpace.size;
n += obj->gcInfo.size)

{
/* Forward a reversed pointer */
obj = FutureSSpace.firstWord[n];
FutureSSpace.firstWord[n] = obj->contents;
obj->contents = &FutureSSpace.firstWord[n];
dontCare = scavengeReferentsOf(obj);

}
}

/∗
scavengeReferentsOf(obj) inspects all the pointers in obj. If any are new objects,

its new referents are scavenged, and returns truth. If there are no new referents, it returns
falsity.

For simplicity here, an object is just an array of pointers, so the objInfo field in the
OT entry is not used.
∗/

scavengeReferentsOf(obj)
oop obj;
{
int i;
int foundNewReferent;
oop referent;

foundNewReferent = FALSE;
for (i = 0; i < obj->gcInfo.size; i++) {

referent = (oop)obj->contents[i];
if (referent->gcInfo.isNew) {
foundNewReferent = TRUE;
if (! referent->gcInfo.isForwarded) {

if (! referent->gcInfo.isOTForwarded)
copyAndForwardObject(referent, FALSE);

if (referent->gcInfo.isOTForwarded)
obj->contents[i] =

(word_t)referent->contents;
}

}
}
return foundNewReferent;

}

/∗
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copyAndForwardObject(obj, isLocked) copies a new object either to FutureSSpace,
or if it is to be tenured, to OldSpace.

If obj is not to be tenured, a pointer from obj to its new location is reversed. Otherwise,
if isLocked is false, its OT entry is copied into OldOT and a forwarding OT pointer is left.
∗/

copyAndForwardObject(obj, isLocked)
oop obj;
int isLocked
{
word_t *newLocation;
oop newOTLocation;

if (obj->gcInfo.age < MaxAge) {
++ obj->gcInfo.age;
newLocation = copyObjectToSpace(

obj->contents,
obj->gcInfo.size,
FutureSSpace);

/* Reverse a pointer */
obj->contents = newLocation[0];
newLocation[0] = obj;
obj->gcInfo.isForwarded = TRUE;

}
else {

newLocation = copyObjectToSpace(
obj->contents,
obj->gcInfo.size,
OldSpace);

if (isLocked) {
obj->contents = newLocation;
obj->gcInfo.isNew = FALSE;
RemSet[RemSetSize++] = obj;
obj->gcInfo.isRemembered = TRUE;

}
else {
newOTLocation = copyOTEntryToOT(obj, OldOT);
newOTLocation->contents = newLocation;
newOTLocation->gcInfo.isNew = FALSE;
obj->contents = newOTLocation;
obj->gcInfo.isOTForwarded = TRUE;
RemSet[RemSetSize++] = newOTLocation;

}
}

}

/∗
reclaimNewOTEntries() traverses all entries in NewOT. If the entry is forwarded, its

isForwarded flag is reset to false. Otherwise, it is reclaimed into free NewOT list.
∗/

reclaimNewOTEntries();
{
int i;

for (i = 0; i < MaxNewObject; i++) {
if (NewOT[i].gcInfo.isNew)
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if (NewOT[i].gcInfo.isForwarded)
NewOT[i].gcInfo.isForwarded = FALSE;

else
addFreeNewOTList(NewOT[i]);

}
}
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